第 5 周命题作业 - 实现一致性 HASH

用户头像
Dawn
关注
发布于: 2020 年 07 月 08 日
第5周命题作业-实现一致性HASH

1 用你熟悉的语言实现一致性HASH算法

  • 存储节点

此处并没有真正把值存储越来,只是统计一下命中次数

package cc.dawn.homework.nodehash;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.atomic.AtomicInteger;
/**
* 存储节点
*/
public class StoreNode {
/**
* 模拟存储量
*/
private AtomicInteger count = new AtomicInteger(0);
/**
* 物理节点名称
*/
private String hostName;
/**
* 键值存储数据集
*/
private Map<Object, Object> kv = new HashMap<>();
public StoreNode(String hostName) {
this.hostName = hostName;
}
public void put(Object key, Object value) {
count.incrementAndGet();
}
public String getHostName() {
return hostName;
}
public void setHostName(String hostName) {
this.hostName = hostName;
}
public Map<Object, Object> getKv() {
return kv;
}
public void setKv(Map<Object, Object> kv) {
this.kv = kv;
}
@Override
public String toString() {
return "StoreNode{" +
"count=" + count +
", hostName='" + hostName + '\'' +
'}';
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
StoreNode storeNode = (StoreNode) o;
return hostName != null ? hostName.equals(storeNode.hostName) : storeNode.hostName == null;
}
@Override
public int hashCode() {
return hostName != null ? hostName.hashCode() : 0;
}
public AtomicInteger getCount() {
return count;
}
public void setCount(AtomicInteger count) {
this.count = count;
}
}



  • 虚拟节点

package cc.dawn.homework.nodehash;
public class VirtualNode {
/**
* 序号,通过每个物理节点对应多个虚拟节点
*/
private int index;
/**
* 对应物理节点
*/
private StoreNode storeNode;
public VirtualNode(int index, StoreNode storeNode) {
this.index = index;
this.storeNode = storeNode;
}
public String getFullName() {
return String.format("%s-%03d", storeNode.getHostName(), index);
}
public int getIndex() {
return index;
}
public void setIndex(int index) {
this.index = index;
}
@Override
public String toString() {
return "StoreNode{" +
"index=" + index +
", node=" + storeNode +
'}';
}
public StoreNode getStoreNode() {
return storeNode;
}
public void setStoreNode(StoreNode storeNode) {
this.storeNode = storeNode;
}
}



  • 一致性Hash实现类

package cc.dawn.homework.nodehash;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;
/**
* 一致性HASH实现类
*/
public class ConsistentHash {
public static long MAX_UINT_32 = 0xffffffffL;
public static int VNODE_COUNT = 100;
public static int OFFSET = (int) (MAX_UINT_32 / VNODE_COUNT);
private static Encrypt encrypt = new Encrypt();
/**
* 物理节点列表
*/
private List<StoreNode> node = new ArrayList<>();
/**
* HashCode映射虚拟节点集合
*/
private TreeMap<Integer, VirtualNode> nodeTreeMap = new TreeMap<>();
/**
* 根据key的hashCode找到对应的存储节点进行数据写入
* @param key
* @param value
*/
public void put(Object key, Object value) {
Map.Entry<Integer, VirtualNode> entry = getVirtualNodeEntry(key);
entry.getValue().getStoreNode().put(key, value);
}
private Map.Entry<Integer, VirtualNode> getVirtualNodeEntry(Object key) {
Map.Entry<Integer, VirtualNode> entry = nodeTreeMap.ceilingEntry(key.hashCode());
if (entry == null) {
entry = nodeTreeMap.firstEntry();
}
return entry;
}
public Object get(Object key) {
Map.Entry<Integer, VirtualNode> entry = getVirtualNodeEntry(key);
return entry.getValue().getStoreNode().getKv().get(key);
}
public synchronized void addNode(String hostName) {
StoreNode storeNode = new StoreNode(hostName);
if (node.contains(storeNode)) {
return;
}
// int start = Utils.hashCode(hostName);
int start = encrypt.MD5(hostName).hashCode();
System.out.println("StoreNode:" + storeNode.getHostName() + ", startHS:" + start);
for (int i = 0; i < VNODE_COUNT; i++) {
nodeTreeMap.put((start + i * OFFSET), new VirtualNode(i, storeNode));
}
this.node.add(storeNode);
}
public synchronized void init(String[] ips) {
int startOffset = (int) (MAX_UINT_32 / ips.length);
for (int j = 0; j < ips.length; j++) {
StoreNode storeNode = new StoreNode(ips[j]);
if (node.contains(storeNode)) {
return;
}
int start = j * startOffset;
System.out.println("StoreNode:" + storeNode.getHostName() + ", startHS:" + start);
for (int i = 0; i < VNODE_COUNT; i++) {
nodeTreeMap.put((start + i * OFFSET), new VirtualNode(i, storeNode));
}
this.node.add(storeNode);
}
// int start = Utils.hashCode(hostName);
}
public List<StoreNode> getNode() {
return node;
}
public void setNode(List<StoreNode> node) {
this.node = node;
}
public TreeMap<Integer, VirtualNode> getNodeTreeMap() {
return nodeTreeMap;
}
public void setNodeTreeMap(TreeMap<Integer, VirtualNode> nodeTreeMap) {
this.nodeTreeMap = nodeTreeMap;
}
@Override
public String toString() {
return "ConsistentHash{" +
"node=" + node +
", nodeTreeMap=" + nodeTreeMap +
'}';
}
}
  • 对外接口

package cc.dawn.homework.nodehash;
public class CacheRoute implements ICacheRoute {
private ConsistentHash consistentHash = new ConsistentHash();
@Override
public void put(Object key, Object value) {
consistentHash.put(key, value);
}
@Override
public Object get(Object key) {
return consistentHash.get(key);
}
@Override
public void clear(Object key) {
}
@Override
public void init(String[] hostNames) {
this.consistentHash.init(hostNames);
}
public ConsistentHash getConsistentHash() {
return consistentHash;
}
}

2 用例测试

如果有100万KV数据写入10台服务器,测试计算数据分布数量的标准差



  • 测试类

package cc.dawn.homework.nodehash;
import java.util.List;
import java.util.UUID;
import java.util.concurrent.CountDownLatch;
import java.util.stream.Collectors;
public class TestConsistentHash {
private static final int MAX_ORDER_PER_NODE = 10000;
private static int OFFSET = (int) (ConsistentHash.MAX_UINT_32 / ConsistentHash.VNODE_COUNT);
public static void main(String[] args) {
CacheRoute cacheRoute = new CacheRoute();
cacheRoute.init(new String[]{"192.168.0.1", "192.168.0.2", "192.168.0.3", "192.168.0.4", "192.168.0.5", "192.168.0.6",
"192.168.0.7", "192.168.0.8", "192.168.0.9", "192.168.0.10"});
CountDownLatch countDownLatch = new CountDownLatch(100);
for (int i = 0; i < 100; i++) {
int finalI = i;
new Thread(() -> {
int count = 0;
while (count++ < MAX_ORDER_PER_NODE) {
cacheRoute.put(UUID.randomUUID(), null);
if (count % 100 == 0) {
System.out.println(String.format("thread-%d----count:%d", finalI, count));
}
}
countDownLatch.countDown();
}).start();
}
try {
countDownLatch.await();
ConsistentHash consistentHash = cacheRoute.getConsistentHash();
System.out.println(consistentHash.getNode().toString());
List<Integer> hitCountList = consistentHash.getNode().stream().map(node -> node.getCount().intValue()).collect(Collectors.toList());
Integer[] array = hitCountList.toArray(new Integer[]{});
double standardDeviation = Utils.standardDeviation(array);
System.out.println("标准差:" + standardDeviation);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}



  • 打印截图



用户头像

Dawn

关注

还未添加个人签名 2018.07.04 加入

还未添加个人简介

评论

发布
暂无评论
第5周命题作业-实现一致性HASH