写点什么

距离 Java 开发者玩转 Serverless,到底还有多远?

发布于: 2020 年 12 月 22 日
距离 Java 开发者玩转 Serverless,到底还有多远?


作者 | 方剑(洛夜)  Spring Cloud Alibaba 开源项目负责人/创始人之一

来源|阿里巴巴云原生公众号


导读:本文摘自 Spring Cloud Alibaba 开源项目创始团队成员方剑撰写的《深入理解 Spring Cloud 与实战》一书,主要讲述了 Java 微服务框架 Spring Boot/Cloud 这个事实标准下如何应对 FaaS 场景。


Serverless & FaaS


2019 年,O'Reilly 对 1500 名 IT 专业人员的调查中,有 40% 的受访者在采用 Serverless 架构的组织中工作。2020 年 [DataDog 调查](https://www.datadoghq.com/state-of-serverless/)显示,现在有超过 50% 的 AWS 用户正在使用 Serverless 架构的 AWS Lambda。


Serverless 正在成为主流,于是就诞生了下面这幅图,从单体应用的管理到微服务应用的管理再到函数的管理。



Serverless 到目前为止还没有一个精准定义。Martin Fowler 在个人博客上有一篇《Serverless Architectures》文章,其对 Serverless 的的定义分成了 BaaS 或 FaaS。



Baas 是全称是 Backend-as-a-Service,后端即服务,FaaS 的全称是 Function-as-a-Service,函数即服务。


今天我们来聊聊 FaaS。这是维基百科对 FaaS 的定义:


函数即服务(FaaS)是一类云计算服务,它提供了一个平台,使客户可以开发,运行和管理应用程序功能,而无需构建和维护通常与开发和启动应用程序相关的基础架构。遵循此模型构建应用程序是实现 Serverless 架构的一种方法,通常在构建微服务应用程序时使用。


对于 Python、JavaScript 这种天生支持 Lambda 的开发语言,和 FaaS 简直是完美结合。Serverless Framework 的调研报告也很好地说明了这一点。NodeJS、Python 是 FaaS 使用率前二的语言。



我们知道,因为 JVM 占用的内存比较大,所以 Java 应用的启动会有点慢,不太适合 FaaS 这个场景,这也是 Java 在使用率上偏低的原因。


另外,对 Java 开发者来说 Spring Boot/Cloud 已经成为了事实标准,依赖注入是 Spring Framework 的核心,Spring Boot/Cloud 这个事实标准应对 FaaS 这个场景,会碰撞出怎么样的火花呢?这就是今天我们要聊的 Spring Cloud Function。


Java Function


在对 Spring Cloud Function 介绍之前,我们先来看 Java 里的核心函数定义。


JDK 1.8 推出了新特性 Lambda 表达式,java.util.function 包下面提供了很多的函数。这 3 个函数尤为重要:


1. java.util.function.Function: 需要一个参数,得到另一个结果.


@FunctionalInterfacepublic interface Function<T, R> {    R apply(T t);}
复制代码


比如通过 Stream API 里的 map 方法可以通过 Function 把字符串从小写变成大写:


Stream.of("a", "b", "c").map(String::toUpperCase);
复制代码


这里的 map 方法需要一个 Function 参数:


<R> Stream<R> map(Function<? super T, ? extends R> mapper);
复制代码


2. java.util.function.Consumer: 需要一个参数进行操作,无返回值。


@FunctionalInterfacepublic interface Consumer<T> {    void accept(T t);}
复制代码


比如通过 Stream API 里的 forEach 方法遍历每个元素,做对应的业务逻辑处理:


RestTemplate restTemplate = new RestTemplate();Stream.of("200", "201", "202").forEach(code -> {    ResponseEntity<String> responseEntity =        restTemplate.getForEntity("http://httpbin.org/status/" + code, String.class);    System.out.println(responseEntity.getStatusCode());});
复制代码


3. java.util.function.Supplier: 得到一个结果,无输入参数。


@FunctionalInterfacepublic interface Supplier<T> {    T get();}
复制代码


比如自定义 Supplier 可以返回随机数:


Random random = new Random();
Supplier supplier100 = () -> random.nextInt(100);Supplier supplier1000 = () -> random.nextInt(1000);
System.out.println(supplier100.get());System.out.println(supplier1000.get());
复制代码


Spring Cloud Function


Java Function 的编程模型非常简单,本质上就是这 3 个核心函数:


  • Supplier<O>

  • Function<I, O>

  • Consumer<I>


Spring Cloud Function 是 Spring 生态跟 Serverless(FaaS) 相关的一个项目。它出现的目的是增强 Java Function,主要体现在这几点:


  • 统一云厂商的 FaaS 编程模型: Spring Cloud Function 的口号是 "Write Once, Run Anywhere"。我们写的 Spring Cloud Function 代码可以运行在本地、各个云厂商(AWS Lambda, GCP Cloud Functions, Azure Functions)。


  • 自动类型转换: 理解过 Spring MVC 或者 Spring Cloud Stream 的同学肯定对 HttpMessageConverter 或者 MessageConverter 模型,这个转换器的作用是将 HTTP BODY(或者 Message Payload)、HTTP Query Parameter、HTTP HEADER(或者 Message Header)自动转换成对应的 POJO。有了这个特性后,我们就无需关注函数的入参和返回值,用 String 参数就可以获取原始的入参信息,用 User 这个 POJO 参数就可以将原始的入参参数自动转换成 User 对象。


  • 函数组合: 可以让多个函数之间进行组合操作。


  • 函数管理: 新增 FunctionCatalog、FunctionRegistry 接口用于 Function 的管理。管理 ApplicationContext 内的 Function,动态注册 Function 等操作。


  • Reactive 支持: Spring Cloud Function 新增比如 FluxFunction、FluxSupplier、FunctionConsumer 这种 Reactive 函数。


  • 自动跟 Spring 生态内部原有的组件进行深度集成:

- Spring Web/Spring WebFlux: 一次 HTTP 请求是一次函数调用。

- Spring Cloud Task: 一次任务执行是一次函数调用。

- Spring Cloud Stream: 一次消息消费/生产/转换是一次函数调用。



这里再多介绍统一云厂商的 FaaS 编程模型,让大家对 Spring Cloud Function 更有体感。


AWS Lambda 是第一个是提供 FaaS 服务的云厂商,RequestStreamHandler 是 AWS 提供的针对 Java 开发者的接口,需要实现这个接口:


public class HandlerStream implements RequestStreamHandler {  @Override  public void handleRequest(InputStream inputStream, OutputStream outputStream, Context context) throws IOException  {    ...
复制代码


Azure Functions 针对 Java 开发者提供了 @HttpTrigger 注解:


public class Function {    public String echo(@HttpTrigger(name = "req",       methods = {HttpMethod.POST},  authLevel = AuthorizationLevel.ANONYMOUS)         String req, ExecutionContext context) {        ...    }}
复制代码


从这两段代码可以看出,不同的云厂商要编写不同的代码。如果要变换云厂商,这个过程会很痛苦。


另外,无论是 AWS、Azure 或者 GCP 提供的接口或注解,他们没有任何 Spring 上下文相关的初始化逻辑。如果我们是一个 Spring Boot/Cloud 应用迁移到 FaaS 平台,需要添加 Spring 上下文初始化逻辑等改动量。


Spring Cloud Function 的出现就是为了解决这些问题。


Spring Cloud Function 的使用


Spring Cloud Function & Spring Web:


@SpringBootApplicationpublic class SpringCloudFunctionWebApplication {
public static void main(String[] args) { SpringApplication.run(SpringCloudFunctionWebApplication.class, args); }
@Bean public Function<String, String> upperCase() { return s -> s.toUpperCase(); }
@Bean public Function<User, String> user() { return user -> user.toString(); }
}
复制代码


访问对应的 Endpoint:


$ curl -XPOST -H "Content-Type: text/plain" localhost:8080/upperCase -d helloHELLO$ curl -XPOST -H "Content-Type: text/plain" localhost:8080/user -d '{"name":"hello SCF"}'User{name\u003d\u0027hello SCF\u0027}
复制代码


Spring Cloud Function & Spring Cloud Stream:


@SpringBootApplicationpublic class SpringCloudFunctionStreamApplication {
public static void main(String[] args) { SpringApplication.run(SpringCloudFunctionStreamApplication.class, args); }
@Bean public Function<String, String> uppercase() { return x -> x.toUpperCase(); }
@Bean public Function<String, String> prefix() { return x -> "prefix-" + x; }
}
复制代码


加上 function 相关的配置(针对 input-topic 上的每个消息,payload 转换大写后再加上 prefix- 前缀,再写到 output-topic 上):


spring.cloud.stream.bindings.input.destination=input-topicspring.cloud.stream.bindings.input.group=scf-group
spring.cloud.stream.bindings.output.destination=output-topic
spring.cloud.stream.function.definition=uppercase|prefix
复制代码


Spring Cloud Function & Spring Cloud Task:


@SpringBootApplicationpublic class SpringCloudFunctionTaskApplication {
public static void main(String[] args) { SpringApplication.run(SpringCloudFunctionTaskApplication.class, args); }
@Bean public Supplier<List<String>> supplier() { return () -> Arrays.asList("200", "201", "202"); }
@Bean public Function<List<String>, List<String>> function() { return (list) -> list.stream().map( item -> "prefix-" + item).collect(Collectors.toList()); }
@Bean public Consumer<List<String>> consumer() { return (list) -> { list.stream().forEach(System.out::println); }; }
}
复制代码


加上 function 相关的配置(Supplier 模拟任务的输入源,Function 模拟对任务输入源的处理,Consumer 模拟处理对 Function 处理输入源后的数据):


spring.cloud.function.task.function=functionspring.cloud.function.task.supplier=supplierspring.cloud.function.task.consumer=consumer
复制代码


《深入理解 Spring Cloud 与实战》一书正式开始预售啦,这是一本深入剖析 Spring Cloud 全家桶的书籍,涉及以下内容


  • Spring Boot 核心特性

  • Spring Cloud 服务注册/服务发现原理剖析

  • 双注册双订阅模型完成 Eureka 迁移至 Nacos 的案例

  • 负载均衡:Spring Cloud LoadBalancer 和 Netflix Ribbon

  • Dubbo Spring Cloud:Spring Cloud 与 Apache Dubbo 的融合

  • Spring Cloud 灰度发布案例

  • Spring 体系配置,动态刷新加载原理剖析

  • Spring Cloud Circuit Breaker 抽象以及 Sentinel、Hystrix、Resilience4j 熔断器对比

  • Spring 体系消息编程模型剖析

  • Spring Cloud Data Flow 完成批处理和流处理任务

  • Spring Cloud Gateway 网关剖析

  • Spring 与 Serverless 的融合


点击了解详情,更有机会赢取免费图书


*作者简介*


方剑  Spring Cloud Alibaba 开源项目负责人/创始人之一。《深入理解 Spring Cloud 与实战》作者,Apache RocketMQ Committer,Alibaba Nacos Committer。曾在个人博客上编写过《SpringMVC 源码分析系列》、《SpringBoot 源码分析系列》文章,目前,关注微服务、云原生、Kubernetes。



《深入理解 Spring Cloud 与实战》作者方剑将出席 1 月 9 日 Spring Cloud Alibaba 上海站,现场活动也有互动赠书活动,欢迎来现场与作者面基。


点击链接参与活动报名:https://www.huodongxing.com/event/2576519081911


发布于: 2020 年 12 月 22 日阅读数: 40
用户头像

阿里巴巴云原生 2019.05.21 加入

还未添加个人简介

评论

发布
暂无评论
距离 Java 开发者玩转 Serverless,到底还有多远?