Kubeless 如何基于 CPU 自动伸缩? | 玩转 Kubeless

用户头像
donghui2020
关注
发布于: 2020 年 10 月 12 日
Kubeless 如何基于 CPU 自动伸缩? | 玩转 Kubeless

自动伸缩是 Serverless 的最大卖点之一。

Kubless 的自动伸缩功能基于 Kubernetes 的 HPA(HorizontalPodAutoscaler)功能实现。

目前,kubeless 中的函数支持基于 cpu 和 qps 这两种指标进行自动伸缩。

本文将演示基于 cpu 指标进行自动伸缩。



环境说明

操作系统:macOS

Kubernetes 版本:v1.15.5

Kubeless 版本:v1.0.7



了解如何设置 autoscale

可以先通过 kubeless 命令行了解如何使用 autoscale。

kubeless autoscale 命令帮助文档如下:

$ kubeless help autoscale
autoscale command allows user to list, create, delete autoscale rule for function on Kubeless


Usage:
kubeless autoscale SUBCOMMAND [flags]
kubeless autoscale [command]


Available Commands:
create automatically scale function based on monitored metrics
delete delete an autoscale from Kubeless
list list all autoscales in Kubeless


Flags:
-h, --help help for autoscale


Use "kubeless autoscale [command] --help" for more information about a command.




kubeless autoscale create 命令帮助文档如下:

$ kubeless autoscale create --help
automatically scale function based on monitored metrics


Usage:
kubeless autoscale create <name> FLAG [flags]


Flags:
-h, --help help for create
--max int32 maximum number of replicas (default 1)
--metric string metric to use for calculating the autoscale. Supported metrics: cpu, qps (default "cpu")
--min int32 minimum number of replicas (default 1)
-n, --namespace string Specify namespace for the autoscale
--value string value of the average of the metric across all replicas. If metric is cpu, value is a number represented as percentage. If metric is qps, value must be in format of Quantity




安装 Metrics Server

要使用 HPA,就需要在集群中安装 Metrics Server 服务,否则 HPA 无法获取指标,自然也就无法进行扩容缩容。

可以使用如下命令检查是否安装了 Metrics Server,如果没有安装,那么需要安装它。

$ kubectl api-versions|grep metrics




1、这里要先下载 metrics-server 的 components.yaml:

$ curl -L https://github.com/kubernetes-sigs/metrics-server/releases/download/v0.3.6/components.yaml --output components.yaml




2、然后在 components.yaml 文件的 88行的 args 下面添加参数 --kubelet-insecure-tls,否则 metrics-server 启动报错:



3、最后再使用 kubectl apply 命令安装 Metrics Server:

$ kubectl apply -f components.yaml
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader created
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created
rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created
serviceaccount/metrics-server created
deployment.apps/metrics-server created
service/metrics-server created
clusterrole.rbac.authorization.k8s.io/system:metrics-server created
clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created




4、再次确认 metrics-server 是否安装成功:

$ kubectl api-versions|grep metrics
metrics.k8s.io/v1beta1




基于 cpu 进行自动伸缩



依旧使用那个熟悉的 Python 代码:

# test.py
def hello(event, context):
print event
return event['data']




创建 hello 函数,加上 cpu 参数和 memory 参数,以便 HPA 可以根据 cpu 指标进行扩容缩容:

$ kubeless function deploy hello --runtime python2.7 --from-file test.py --handler test.hello --cpu 200m --memory 200M
INFO[0000] Deploying function...
INFO[0000] Function hello submitted for deployment
INFO[0000] Check the deployment status executing 'kubeless function ls hello'




查看函数状态:

$ kubeless function ls hello
NAME NAMESPACE HANDLER RUNTIME DEPENDENCIES STATUS
hello default test.hello python2.7 1/1 READY




使用 kubeless 为函数 hello 创建 autoscale:

$ kubeless autoscale create hello --metric=cpu --min=1 --max=20 --value=60
INFO[0000] Adding autoscaling rule to the function...
INFO[0000] Autoscaling rule for hello submitted for deployment




使用 kubectl proxy 创建反向代理,以便可以通过 http 访问函数:

$ kubectl proxy -p 8080




接下来对函数进行压力测试,这里使用 ab,它是 apache 自带的压力测试工具,macOS 默认安装了 apache,直接可以使用。

使用 ab 工具进行压力测试:

$ ab -n 3000 -c 8 -t 300 -k -r "http://127.0.0.1:8080/api/v1/namespaces/default/services/hello:http-function-port/proxy/"




使用 kubectl get hpa -w 命令观察 HPA 的状态,可以看到副本数会根据指标的大小进行变化,压力大的时候副本量会随着递增,等到压力小了副本量会递减:

$ kubectl get hpa -w
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hello Deployment/hello 0%/60% 1 20 1 30m
hello Deployment/hello 95%/60% 1 20 1 32m
hello Deployment/hello 95%/60% 1 20 2 33m
hello Deployment/hello 77%/60% 1 20 2 33m
hello Deployment/hello 77%/60% 1 20 3 34m
hello Deployment/hello 63%/60% 1 20 3 34m
hello Deployment/hello 62%/60% 1 20 3 36m
hello Deployment/hello 71%/60% 1 20 3 37m
hello Deployment/hello 71%/60% 1 20 4 37m
hello Deployment/hello 0%/60% 1 20 4 38m
hello Deployment/hello 0%/60% 1 20 4 42m
hello Deployment/hello 0%/60% 1 20 1 43m




使用 kubectl get pod -w 命令观察也可以看到自动伸缩时 Pod 的数量及状态变化:

$ kubectl get pod -w
NAME READY STATUS RESTARTS AGE
hello-67b44c7585-5t9g4 1/1 Running 0 21h
hello-67b44c7585-d9w7j 0/1 Pending 0 0s
hello-67b44c7585-d9w7j 0/1 Pending 0 0s
hello-67b44c7585-d9w7j 0/1 Init:0/1 0 0s
hello-67b44c7585-d9w7j 0/1 PodInitializing 0 2s
hello-67b44c7585-d9w7j 1/1 Running 0 6s
hello-67b44c7585-fctgq 0/1 Pending 0 0s
hello-67b44c7585-fctgq 0/1 Pending 0 0s
hello-67b44c7585-fctgq 0/1 Init:0/1 0 0s
hello-67b44c7585-fctgq 0/1 PodInitializing 0 2s
hello-67b44c7585-fctgq 1/1 Running 0 3s
hello-67b44c7585-ht784 0/1 Pending 0 0s
hello-67b44c7585-ht784 0/1 Pending 0 0s
hello-67b44c7585-ht784 0/1 Init:0/1 0 0s
hello-67b44c7585-ht784 0/1 PodInitializing 0 2s
hello-67b44c7585-ht784 1/1 Running 0 3s
hello-67b44c7585-wfcg9 0/1 Pending 0 0s
hello-67b44c7585-wfcg9 0/1 Pending 0 0s
hello-67b44c7585-wfcg9 0/1 Init:0/1 0 0s
hello-67b44c7585-wfcg9 0/1 PodInitializing 0 2s
hello-67b44c7585-wfcg9 1/1 Running 0 3s
hello-67b44c7585-fctgq 1/1 Terminating 0 8m53s
hello-67b44c7585-ht784 1/1 Terminating 0 7m52s
hello-67b44c7585-wfcg9 1/1 Terminating 0 5m50s
hello-67b44c7585-d9w7j 1/1 Terminating 0 9m54s
hello-67b44c7585-fctgq 0/1 Terminating 0 9m24s
hello-67b44c7585-ht784 0/1 Terminating 0 8m23s
hello-67b44c7585-fctgq 0/1 Terminating 0 9m25s
hello-67b44c7585-fctgq 0/1 Terminating 0 9m25s
hello-67b44c7585-fctgq 0/1 Terminating 0 9m25s
hello-67b44c7585-d9w7j 0/1 Terminating 0 10m
hello-67b44c7585-d9w7j 0/1 Terminating 0 10m
hello-67b44c7585-ht784 0/1 Terminating 0 8m24s
hello-67b44c7585-wfcg9 0/1 Terminating 0 6m22s
hello-67b44c7585-d9w7j 0/1 Terminating 0 10m
hello-67b44c7585-d9w7j 0/1 Terminating 0 10m
hello-67b44c7585-d9w7j 0/1 Terminating 0 10m
hello-67b44c7585-wfcg9 0/1 Terminating 0 6m29s
hello-67b44c7585-wfcg9 0/1 Terminating 0 6m29s
hello-67b44c7585-ht784 0/1 Terminating 0 8m31s
hello-67b44c7585-ht784 0/1 Terminating 0 8m31s


参考

https://kubeless.io/docs/autoscaling/

https://github.com/mvranic/kubeless-apl-demo

https://github.com/kubernetes-sigs/metrics-server

https://stackoverflow.com/questions/54106725/docker-kubernetes-mac-autoscaler-unable-to-find-metrics





发布于: 2020 年 10 月 12 日 阅读数: 890
用户头像

donghui2020

关注

还未添加个人签名 2018.01.01 加入

还未添加个人简介

评论 (2 条评论)

发布
用户头像
标题有错误,Keubeless→kubeless
2020 年 10 月 13 日 16:47
回复
谢谢,已更正~
2020 年 10 月 13 日 18:49
回复
没有更多了
Kubeless 如何基于 CPU 自动伸缩? | 玩转 Kubeless