GreptimeDB 助力国家电网数字换流站打造稳定高效的时序数据底座
电网体系作为现代社会运行的支柱之一,为各行各业、千家万户提供了电能的基本支持。从家庭到企业,医院到学校,交通到通讯,电力电网的应用贯穿始终。近年来,特高压换流站成为国家电网的重点建设工程,“十四五”期间,国家电网公司规划建设特高压工程“24 交 14 直”,涉及线路 3 万余公里,变电换流容量 3.4 亿千伏安,总投资 3800 亿元。
国家电网 2024 年工作会议中提出将继续加大数智化坚强电网的建设。数智化坚强电网是将数字化、智能化技术深入融合嵌入电网生产运行与管理运营过程的新型电网形态。数智化的发展为国家电网对数据的使用提出了更高的要求。通过建设云端和站端时序数据库平台,能够高效提高时序数据使用效率,大幅降低使用成本,为国家电网数智化建设提供坚实的数据基础保障。
项目背景
数字换流站项目是国家电网数智化的重点项目。每个特高压换流站有数千个大中型智能设备,处理数十万个测点的毫秒级精度数据,每天产生了数亿行的时序数据集。
面对如此海量的时序数据写入、查询和分析管理需求,此前站端使用的 CeresDB,InfluxDB 或基于 InfluxDB 自研等时序数据库产品已无法满足需求。同时,国家电网需要打破各个站端的数据孤岛,实现云站两端数据融合。
经过大量调研和产品性能测试,国家电网最终选择使用「格睿科技的 GreptimeDB 时序数据库企业版」产品作为数字换流站项目的「站端 + 云端的时序数据管理平台」,实现了数字换流站的跨站端时序数据的高效融合利用以及毫秒级精度的数据处理响应,为国家电网数智化建设提供了高质量的数据基础。
项目挑战
随着国家电网数字化建设的进程加快及数字化应用的快速普及,对底层时序数据的质量和响应速度等要求也越来越高。数据使用的问题不断增加:
1. 时序数据孤岛
每个站端因建设时间差异和建设集成商选择区别等问题,导致最终不同站端的时序数据库和数据架构不一致,难以得到高质量、标准化的时序数据,影响站端和云端高级应用和人工智能等服务的规模化落地,形成了站端数据孤岛。
2. 数据使用效率低
海量时序数据响应速度慢随着大规模传感器的部署实施,每个站端每天需要处理的时序数据量达到数亿行,海量时序数据的写入、查询和分析等能力随之下降,响应时间越来越慢。
时序数据计算能力弱,研发投入大当应用侧对时序数据的兼容性和数据计算能力提出更高要求时,国家电网需要投入巨大的研发资源才能满足部分需求。
3. 数据使用成本高
随着数据量越来越大,数据的上传和云计算资源开销也成倍增加。
解决方案和架构
产品架构
数据库架构图
业务架构图
GreptimeDB 作为国家电网数字换流站数据底座的核心数据库产品,承担了换流站内设备的时序数据存储、查询、计算和管理的责任;统一了各个站端的数据架构;支持了海量时序数据的毫秒级精度的处理响应,为国家电网数字化应用提供了数据基础保障。
项目成果
1. 打破数据孤岛
GreptimeDB 统一了云端和站端的数据格式及模型,实现了几十个数字换流站站端数据与云端数据的高效融合与协同。
2. 实现海量数据毫秒级精度处理响应
GreptimeDB 可以轻松实现站端每天数亿行时序数据的毫秒级精度的实时写入、查询和分析,为数字孪生、智能运维和人工智能等应用提供可靠的基础数据保证。
3. 降低数据使用成本
GreptimeDB 可以支持三十倍以上的数据无损压缩能力、端云数据同构和边缘计算能力,大幅降低数据储存成本、云计算资源开销和数据上传的流量成本。
GreptimeDB 作为开源项目,欢迎对时序数据库、Rust 语言等内容感兴趣的同学们参与贡献和讨论。第一次参与项目的同学推荐先从带有 good first issue 标签的 issue 入手,期待在开源社群里遇见你!Star us on GitHub Now: https://github.com/GreptimeTeam/greptimedb微信搜索 GreptimeDB,关注公众号不错过更多技术干货和福利~
关于 Greptime
Greptime 格睿科技专注于为物联网(如智慧能源、智能汽车等)及可观测等产生大量时序数据的领域提供实时、高效的数据存储和分析服务,帮助客户挖掘数据的深层价值。目前主要有以下三款产品:
GreptimeDB 是一款用 Rust 语言编写的开源时序数据库,具有云原生、无限水平扩展、高性能、融合分析等特点,帮助企业实时读写、处理和分析时序数据的同时,降低长期存储的成本。我们提供 GreptimDB 企业版,支持更多功能和定制化服务,如有需要欢迎联系小助手:15310923206(微信同)
GreptimeCloud 是一款全托管的云上数据库即服务(DBaaS)解决方案,基于开源时序数据库 GreptimeDB 打造,能够高效支持可观测、物联网、金融等领域的应用。用户可以通过内置的可观测解决方案 GreptimeAI 全面地掌握 LLM 应用的成本、性能、流量和安全等情况。
车云一体解决方案 是一款深入车企实际业务场景的车云协同数据解决方案,解决了企业车辆数据呈几何倍数增长后的实际业务痛点。多模态车端数据库结合云端 GreptimeDB 企业版帮助车企极大降低流量、计算和存储成本,并帮助提升数据实时性和业务洞察能力。GreptimeDB 作为开源项目,欢迎对时序数据库、Rust 语言等内容感兴趣的同学们参与贡献和讨论。第一次参与项目的同学推荐先从带有 good first issue 标签的 issue 入手,期待在开源社群里遇见你!官网:https://greptime.cn/GitHub: https://github.com/GreptimeTeam/greptimedb文档:https://docs.greptime.cn/Twitter: https://twitter.com/GreptimeSlack: https://www.greptime.com/slackLinkedIn: https://www.linkedin.com/company/greptime
版权声明: 本文为 InfoQ 作者【Greptime 格睿科技】的原创文章。
原文链接:【http://xie.infoq.cn/article/b28c1668463b2bf4869ef68f1】。文章转载请联系作者。
评论