写点什么

人工智能 | 清华大学 ChatGLM 大模型

  • 2024-08-28
    北京
  • 本文字数:817 字

    阅读完需:约 3 分钟

更多软件测试学习资料戳

ChatGLM 大模型

ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答,更多信息请参考我们的博客。欢迎通过 chatglm.cn 体验更大规模的 ChatGLM 模型。

为了方便下游开发者针对自己的应用场景定制模型,我们同时实现了基于 P-Tuning v2 的高效参数微调方法 (使用指南) ,INT4 量化级别下最低只需 7GB 显存即可启动微调。

ChatGLM-6B 权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用。

安装

使用 pip 安装依赖:pip install -r requirements.txt,其中 transformers 库版本推荐为 4.27.1,但理论上不低于 4.23.1 即可。

此外,如果需要在 cpu 上运行量化后的模型,还需要安装 gcc 与 openmp。多数 Linux 发行版默认已安装。对于 Windows ,可在安装 TDM-GCC 时勾选 openmp。Windows 测试环境 gcc 版本为 TDM-GCC 10.3.0, Linux 为 gcc 11.3.0。在 MacOS 上请参考 Q1。


使用

>>> from transformers import AutoTokenizer, AutoModel>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)>>> model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()>>> model = model.eval()>>> response, history = model.chat(tokenizer, "你好", history=[])>>> print(response)你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。>>> response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)>>> print(response)
复制代码



用户头像

社区:ceshiren.com 微信:ceshiren2023 2022-08-29 加入

微信公众号:霍格沃兹测试开发 提供性能测试、自动化测试、测试开发等资料、实事更新一线互联网大厂测试岗位内推需求,共享测试行业动态及资讯,更可零距离接触众多业内大佬

评论

发布
暂无评论
人工智能 | 清华大学ChatGLM大模型_测试_测吧(北京)科技有限公司_InfoQ写作社区