本文由『Go 开源说』第四期 go-zero 直播内容修改整理而成,视频内容较长,拆分成上下篇,本文内容有所删减和重构。
大家好,很高兴来到“GO 开源说” 跟大家分享开源项目背后的一些故事、设计思想以及使用方法,今天分享的项目是 go-zero,一个集成了各种工程实践的 web 和 rpc 框架。我是 Kevin,go-zero 作者,我的 github id 是 kevwan。
go-zero 概览
go-zero 虽然是 20 年 8 月 7 号才开源,但是已经经过线上大规模检验了,也是我近 20 年工程经验的积累,开源后得到社区的积极反馈,在 5 个多月的时间里,获得了 6k stars。多次登顶 github Go 语言日榜、周榜、月榜榜首,并获得了 gitee 最有价值项目(GVP),开源中国年度最佳人气项目。同时微信社区极为活跃,3000+人的社区群,go-zero 爱好者们一起交流 go-zero 使用心得和讨论使用过程中的问题。
go-zero 如何自动管理缓存?
缓存设计原理
我们对缓存是只删除,不做更新,一旦 DB 里数据出现修改,我们就会直接删除对应的缓存,而不是去更新。
我们看看删除缓存的顺序怎样才是正确的。
我们看两个并发请求的情况,A 请求需要更新数据,先删除了缓存,然后 B 请求来读取数据,此时缓存没有数据,就会从 DB 加载数据并写回缓存,然后 A 更新了 DB,那么此时缓存内的数据就会一直是脏数据,知道缓存过期或者有新的更新数据的请求。如图
A 请求先更新 DB,然后 B 请求来读取数据,此时返回的是老数据,此时可以认为是 A 请求还没更新完,最终一致性,可以接受,然后 A 删除了缓存,后续请求都会拿到最新数据,如图
让我们再来看一下正常的请求流程:
第一个请求更新 DB,并删除了缓存
第二个请求读取缓存,没有数据,就从 DB 读取数据,并回写到缓存里
后续读请求都可以直接从缓存读取
我们再看一下 DB 查询有哪些情况,假设行记录里有 ABCDEFG 七列数据:
只查询部分列数据的请求,比如请求其中的 ABC,CDE 或者 EFG 等,如图
查询单条完整行记录,如图
查询多条行记录的部分或全部列,如图
对于上面三种情况,首先,我们不用部分查询,因为部分查询没法缓存,一旦缓存了,数据有更新,没法定位到有哪些数据需要删除;其次,对于多行的查询,根据实际场景和需要,我们会在业务层建立对应的从查询条件到主键的映射;而对于单行完整记录的查询,go-zero 内置了完整的缓存管理方式。所以核心原则是:go-zero 缓存的一定是完整的行记录。
下面我们来详细介绍 go-zero 内置的三种场景的缓存处理方式:
基于主键的缓存
这种相对来讲是最容易处理的缓存,只需要在 redis
里用 primary key
作为 key
来缓存行记录即可。
基于唯一索引的缓存
在做基于索引的缓存设计的时候我借鉴了 database
索引的设计方法,在 database
设计里,如果通过索引去查数据时,引擎会先在 索引->主键
的 tree
里面查找到主键,然后再通过主键去查询行记录,就是引入了一个间接层去解决索引到行记录的对应问题。在 go-zero 的缓存设计里也是同样的原理。
基于索引的缓存又分为单列唯一索引和多列唯一索引:
* 单列唯一索引如下:
UNIQUE KEY `product_idx` (`product`)
复制代码
* 多列唯一索引如下:
UNIQUE KEY `vendor_product_idx` (`vendor`, `product`)
复制代码
但是对于 go-zero 来说,单列和多列只是生成缓存 key
的方式不同而已,背后的控制逻辑是一样的。然后 go-zero 内置的缓存管理就比较好的控制了数据一致性问题,同时也内置防止了缓存的击穿、穿透、雪崩问题(这些在 gopherchina 大会上分享的时候仔细讲过,见后续 gopherchina 分享视频)。
另外,go-zero 内置了缓存访问量、访问命中率统计,如下所示:
dbcache(sqlc) - qpm: 5057, hit_ratio: 99.7%, hit: 5044, miss: 13, db_fails: 0
复制代码
可以看到比较详细的统计信息,便于我们来分析缓存的使用情况,对于缓存命中率极低或者请求量极小的情况,我们就可以去掉缓存了,这样也可以降低成本。
缓存代码解读
1. 基于主键的缓存逻辑
具体实现代码如下:
func (cc CachedConn) QueryRow(v interface{}, key string, query QueryFn) error {
return cc.cache.Take(v, key, func(v interface{}) error {
return query(cc.db, v)
})
}
复制代码
这里的 Take
方法是先从缓存里去通过 key
拿数据,如果拿到就直接返回,如果拿不到,那么就通过 query
方法去 DB
读取完整行记录并写回缓存,然后再返回数据。整个逻辑还是比较简单易懂的。
我们详细看看 Take
的实现:
func (c cacheNode) Take(v interface{}, key string, query func(v interface{}) error) error {
return c.doTake(v, key, query, func(v interface{}) error {
return c.SetCache(key, v)
})
}
复制代码
Take
的逻辑如下:
其中的 doTake
代码和解释如下:
// v - 需要读取的数据对象
// key - 缓存key
// query - 用来从DB读取完整数据的方法
// cacheVal - 用来写缓存的方法
func (c cacheNode) doTake(v interface{}, key string, query func(v interface{}) error,
cacheVal func(v interface{}) error) error {
// 用barrier来防止缓存击穿,确保一个进程内只有一个请求去加载key对应的数据
val, fresh, err := c.barrier.DoEx(key, func() (interface{}, error) {
// 从cache里读取数据
if err := c.doGetCache(key, v); err != nil {
// 如果是预先放进来的placeholder(用来防止缓存穿透)的,那么就返回预设的errNotFound
// 如果是未知错误,那么就直接返回,因为我们不能放弃缓存出错而直接把所有请求去请求DB,
// 这样在高并发的场景下会把DB打挂掉的
if err == errPlaceholder {
return nil, c.errNotFound
} else if err != c.errNotFound {
// why we just return the error instead of query from db,
// because we don't allow the disaster pass to the DBs.
// fail fast, in case we bring down the dbs.
return nil, err
}
// 请求DB
// 如果返回的error是errNotFound,那么我们就需要在缓存里设置placeholder,防止缓存穿透
if err = query(v); err == c.errNotFound {
if err = c.setCacheWithNotFound(key); err != nil {
logx.Error(err)
}
return nil, c.errNotFound
} else if err != nil {
// 统计DB失败
c.stat.IncrementDbFails()
return nil, err
}
// 把数据写入缓存
if err = cacheVal(v); err != nil {
logx.Error(err)
}
}
// 返回json序列化的数据
return jsonx.Marshal(v)
})
if err != nil {
return err
}
if fresh {
return nil
}
// got the result from previous ongoing query
c.stat.IncrementTotal()
c.stat.IncrementHit()
// 把数据写入到传入的v对象里
return jsonx.Unmarshal(val.([]byte), v)
}
复制代码
2. 基于唯一索引的缓存逻辑
因为这块比较复杂,所以我用不同颜色标识出来了响应的代码块和逻辑,block 2
其实跟基于主键的缓存是一样的,这里主要讲 block 1
的逻辑。
代码块的 block 1
部分分为两种情况:
通过索引能够从缓存里找到主键
此时就直接用主键走 block 2
的逻辑了,后续同上面基于主键的缓存逻辑
通过索引无法从缓存里找到主键
// v - 需要读取的数据对象
// key - 通过索引生成的缓存key
// keyer - 用主键生成基于主键缓存的key的方法
// indexQuery - 用索引从DB读取完整数据的方法,需要返回主键
// primaryQuery - 用主键从DB获取完整数据的方法
func (cc CachedConn) QueryRowIndex(v interface{}, key string, keyer func(primary interface{}) string,
indexQuery IndexQueryFn, primaryQuery PrimaryQueryFn) error {
var primaryKey interface{}
var found bool
// 先通过索引查询缓存,看是否有索引到主键的缓存
if err := cc.cache.TakeWithExpire(&primaryKey, key, func(val interface{}, expire time.Duration) (err error) {
// 如果没有索引到主键的缓存,那么就通过索引查询完整数据
primaryKey, err = indexQuery(cc.db, v)
if err != nil {
return
}
// 通过索引查询到了完整数据,设置found,后面直接使用,不需要再从缓存读取数据了
found = true
// 将主键到完整数据的映射保存到缓存里,TakeWithExpire方法已经将索引到主键的映射保存到缓存了
return cc.cache.SetCacheWithExpire(keyer(primaryKey), v, expire+cacheSafeGapBetweenIndexAndPrimary)
}); err != nil {
return err
}
// 已经通过索引找到了数据,直接返回即可
if found {
return nil
}
// 通过主键从缓存读取数据,如果缓存没有,通过primaryQuery方法从DB读取并回写缓存再返回数据
return cc.cache.Take(v, keyer(primaryKey), func(v interface{}) error {
return primaryQuery(cc.db, v, primaryKey)
})
}
复制代码
我们来看一个实际的例子
func (m *defaultUserModel) FindOneByUser(user string) (*User, error) {
var resp User
// 生成基于索引的key
indexKey := fmt.Sprintf("%s%v", cacheUserPrefix, user)
err := m.QueryRowIndex(&resp, indexKey,
// 基于主键生成完整数据缓存的key
func(primary interface{}) string {
return fmt.Sprintf("user#%v", primary)
},
// 基于索引的DB查询方法
func(conn sqlx.SqlConn, v interface{}) (i interface{}, e error) {
query := fmt.Sprintf("select %s from %s where user = ? limit 1", userRows, m.table)
if err := conn.QueryRow(&resp, query, user); err != nil {
return nil, err
}
return resp.Id, nil
},
// 基于主键的DB查询方法
func(conn sqlx.SqlConn, v, primary interface{}) error {
query := fmt.Sprintf("select %s from %s where id = ?", userRows, m.table)
return conn.QueryRow(&resp, query, primary)
})
// 错误处理,需要判断是否返回的是sqlc.ErrNotFound,如果是,我们用本package定义的ErrNotFound返回
// 避免使用者感知到有没有使用缓存,同时也是对底层依赖的隔离
switch err {
case nil:
return &resp, nil
case sqlc.ErrNotFound:
return nil, ErrNotFound
default:
return nil, err
}
}
复制代码
所有上面这些缓存的自动管理代码都是可以通过 goctl 自动生成的,我们团队内部 CRUD
和缓存基本都是通过 goctl 自动生成的,可以节省大量开发时间,并且缓存代码本身也是非常容易出错的,即使有很好的代码经验,也很难每次完全写对,所以我们推荐尽可能使用自动的缓存代码生成工具去避免错误。
Need more?
后续我会发文讲解对于多行记录的请求该如何处理缓存,敬请期待!
如果你想要更好的了解 go-zero 项目,欢迎前往官方网站上学习具体的示例。
视频回放地址
https://www.bilibili.com/video/BV1Jy4y127Xu
项目地址
https://github.com/tal-tech/go-zero
欢迎使用 go-zero 并 star 支持我们!
评论