Doris 一种实时多维分析的解决方案
Doris 这类 MPP 架构的 OLAP 数据库,通常都是通过提高并发,来处理大量数据的。本质上,Doris 的数据存储在类似 SSTable(Sorted String Table)的数据结构中。该结构是一种有序的数据结构,可以按照指定的列进行排序存储。在这种数据结构上,以排序列作为条件进行查找,会非常的高效。
限制
在
Count(*)
语法方面,原生的方式性能不是特别高,需要自行优化(http://doris.apache.org/documentation/cn/getting-started/data-model-rollup.html)不存在除了维度和指标之外的字段类型存在,如果需要实现多种需求场景,需要创建多种表类型来冗余数据方式实现
数据存储结构
在 Doris 中,数据以表(Table)的形式进行逻辑上的描述。一张表包括行(Row)和列(Column)。Row 即用户的一行数据。Column 用于描述一行数据中不同的字段。
Column 可以分为两大类:Key 和 Value。从业务角度看,Key 和 Value 可以分别对应维度列和指标列。
Doris 的数据模型主要分为3类:
Aggregate
Uniq
Duplicate
Aggregate 模型
在 Doris 通过 key 来来决定 value 的聚合粒度大小。
像带有 REPLACE、SUM、MAX、MIN 这种标记的字段都是属于 value,user_id
, date
, timestamp
, city
, age
, sex
则为key。
Uniq模型
这类数据没有聚合需求,只需保证主键唯一性。
Duplicate 模型
在某些多维分析场景下,数据既没有主键,也没有聚合需求。因此,我们引入 Duplicate 数据模型来满足这类需求。
这种数据模型区别于 Aggregate 和 Uniq 模型。数据完全按照导入文件中的数据进行存储,不会有任何聚合。即使两行数据完全相同,也都会保留。 而在建表语句中指定的 DUPLICATE KEY,只是用来指明底层数据按照那些列进行排序。
在 DUPLICATE KEY 的选择上,我们建议适当的选择前 2-4 列就可以。
数据模型的选择建议
因为数据模型在建表时就已经确定,且无法修改。所以,选择一个合适的数据模型非常重要。
Aggregate 模型可以通过预聚合,极大地降低聚合查询时所需扫描的数据量和查询的计算量,非常适合有固定模式的报表类查询场景。但是该模型对 count(*) 查询很不友好。同时因为固定了 Value 列上的聚合方式,在进行其他类型的聚合查询时,需要考虑语意正确性。
Uniq 模型针对需要唯一主键约束的场景,可以保证主键唯一性约束。但是无法利用 ROLLUP 等预聚合带来的查询优势(因为本质是 REPLACE,没有 SUM 这种聚合方式)。
Duplicate 适合任意维度的 Ad-hoc 查询。虽然同样无法利用预聚合的特性,但是不受聚合模型的约束,可以发挥列存模型的优势(只读取相关列,而不需要读取所有 Key 列)。
前缀索引
在 Aggregate、Uniq 和 Duplicate 三种数据模型中。底层的数据存储,是按照各自建表语句中,AGGREGATE KEY、UNIQ KEY 和 DUPLICATE KEY 中指定的列进行排序存储的。
而前缀索引,即在排序的基础上,实现的一种根据给定前缀列,快速查询数据的索引方式。
我们将一行数据的前 36 个字节 作为这行数据的前缀索引。当遇到 VARCHAR 类型时,前缀索引会直接截断。我们举例说明:
以下表结构的前缀索引为 user_id(8Byte) + age(4Bytes) + message(prefix 24 Bytes)。
以下表结构的前缀索引为 user_name(20 Bytes)。即使没有达到 36 个字节,因为遇到 VARCHAR,所以直接截断,不再往后继续。
当我们的查询条件,是前缀索引的前缀时,可以极大的加快查询速度。比如在第一个例子中,我们执行如下查询:
该查询的效率会远高于如下查询:
所以在建表时,正确的选择列顺序,能够极大地提高查询效率。
物化视图(rollup)
ROLLUP 在多维分析中是“上卷”的意思,即将数据按某种指定的粒度进行进一步聚合。
在 Doris 中,我们将用户通过建表语句创建出来的表成为 Base 表(Base Table)。Base 表中保存着按用户建表语句指定的方式存储的基础数据。
在 Base 表之上,我们可以创建任意多个 ROLLUP 表。这些 ROLLUP 的数据是基于 Base 表产生的,并且在物理上是独立存储的。
ROLLUP 表的基本作用,在于在 Base 表的基础上,获得更粗粒度的聚合数据。
Rollup 本质上可以理解为原始表(Base Table)的一个物化索引。建立 Rollup 时可只选取 Base Table 中的部分列作为 Schema。Schema 中的字段顺序也可与 Base Table 不同。
ROLLUP 创建完成之后的触发是程序自动的,不需要任何其他指定或者配置。
例如:创建了 user_id (key),cost(value)格式的 rollup 时,当执行下方语句时,就会触发。
Aggregate 和 Uniq 两种数据存储格式时,使用 rollup 会改变聚合数据的粒度,但对于 Duplicate 只是调整前缀索引。
因为建表时已经指定了列顺序,所以一个表只有一种前缀索引。这对于使用其他不能命中前缀索引的列作为条件进行的查询来说,效率上可能无法满足需求。因此,我们可以通过创建 ROLLUP 来人为的调整列顺序。举例说明。
Base 表结构如下:
我们可以在此基础上创建一个 ROLLUP 表:
可以看到,ROLLUP 和 Base 表的列完全一样,只是将 user_id 和 age 的顺序调换了。那么当我们进行如下查询时:
会优先选择 ROLLUP 表,因为 ROLLUP 的前缀索引匹配度更高。
创建 rollup 语法
ROLLUP 调整前缀索引
因为建表时已经指定了列顺序,所以一个表只有一种前缀索引。这对于使用其他不能命中前缀索引的列作为条件进行的查询来说,效率上可能无法满足需求。因此,我们可以通过创建 ROLLUP 来人为的调整列顺序。
ROLLUP 的几点说明
ROLLUP 最根本的作用是提高某些查询的查询效率(无论是通过聚合来减少数据量,还是修改列顺序以匹配前缀索引)。因此 ROLLUP 的含义已经超出了 “上卷” 的范围。这也是为什么我们在源代码中,将其命名为 Materized Index(物化索引)的原因。
ROLLUP 是附属于 Base 表的,可以看做是 Base 表的一种辅助数据结构。用户可以在 Base 表的基础上,创建或删除 ROLLUP,但是不能在查询中显式的指定查询某 ROLLUP。是否命中 ROLLUP 完全由 Doris 系统自动决定。
ROLLUP 的数据是独立物理存储的。因此,创建的 ROLLUP 越多,占用的磁盘空间也就越大。同时对导入速度也会有影响(导入的ETL阶段会自动产生所有 ROLLUP 的数据),但是不会降低查询效率(只会更好)。
ROLLUP 的数据更新与 Base 表示完全同步的。用户无需关心这个问题。
ROLLUP 中列的聚合方式,与 Base 表完全相同。在创建 ROLLUP 无需指定,也不能修改。
查询能否命中 ROLLUP 的一个必要条件(非充分条件)是,查询所涉及的所有列(包括 select list 和 where 中的查询条件列等)都存在于该 ROLLUP 的列中。否则,查询只能命中 Base 表。
某些类型的查询(如 count(*))在任何条件下,都无法命中 ROLLUP。
可以通过
EXPLAIN your_sql;
命令获得查询执行计划,在执行计划中,查看是否命中 ROLLUP。可以通过
DESC tbl_name ALL;
语句显示 Base 表和所有已创建完成的 ROLLUP。
rollup 数量没有限制,但数量越多会消耗比较多的内存。支持 SQL 方式变更 rollup 字段数量。
分区和分桶
Doris 支持两级分区存储, 第一层为 RANGE 分区(partition), 第二层为 HASH 分桶(bucket)。
1.3.1. RANGE分区(partition)
1.3.2. HASH分桶(bucket)
稀疏索引和 Bloom Filter
Doris对数据进行有序存储, 在数据有序的基础上为其建立稀疏索引,索引粒度为 block(1024行)。
稀疏索引选取 schema 中固定长度的前缀作为索引内容, 目前 Doris 选取 36 个字节的前缀作为索引。
建表时建议将查询中常见的过滤字段放在 Schema 的前面, 区分度越大,频次越高的查询字段越往前放。
这其中有一个特殊的地方,就是 varchar 类型的字段。varchar 类型字段只能作为稀疏索引的最后一个字段。索引会在 varchar 处截断, 因此 varchar 如果出现在前面,可能索引的长度可能不足 36 个字节。具体可以参阅 数据模型、ROLLUP 及前缀索引。
除稀疏索引之外, Doris还提供bloomfilter索引, bloomfilter索引对区分度比较大的列过滤效果明显。 如果考虑到varchar不能放在稀疏索引中, 可以建立bloomfilter索引。
Broadcast/Shuffle Join
系统默认实现 Join 的方式,是将小表进行条件过滤后,将其广播到大表所在的各个节点上,形成一个内存 Hash 表,然后流式读出大表的数据进行Hash Join。但是如果当小表过滤后的数据量无法放入内存的话,此时 Join 将无法完成,通常的报错应该是首先造成内存超限。
如果遇到上述情况,建议使用 Shuffle Join 的方式,也被称作 Partitioned Join。即将小表和大表都按照 Join 的 key 进行 Hash,然后进行分布式的 Join。这个对内存的消耗就会分摊到集群的所有计算节点上。
问题
在已经创建的表基础上进行表结构字段的变更和 rollup 索引的变更?
支持,但数据模式一旦表创建就无法变更。
rollup 是否存在数量的限制?
不存在,但越多的 rollup 内存资源会消耗更多,同时,导入数据会比较慢。
(A,B,C)构成的索引是否支持仅 A 字段作为查询条件查询?
支持,但要有顺序要求。
总结
Doris 表结构由 key 和 value 构成,key 为维度,value 为统计指标。适合做简单的聚合计算和维度计算,使用比较低的硬件条件拥有比较高的性能。
查询:满足 MySQL 语法
提升查询性能:使用前缀索引+rollup 或者使用 partition、bloom 过滤器。
提升 join 方式查询性能:Shuffle Join。
表结构和索引都支持变更,但数据模式不支持变更。
Doris 官方还推出了 Docker 的 Dev 版本进行特性试用。https://hub.docker.com/r/apachedoris/doris-dev
欢迎关注公众号
版权声明: 本文为 InfoQ 作者【迹_Jason】的原创文章。
原文链接:【http://xie.infoq.cn/article/a57944d8f82dc8f9c08822904】。文章转载请联系作者。
评论