TiDB 关联子查询优化实践
- 2024-10-18 北京
本文字数:15995 字
阅读完需:约 52 分钟
作者: 数据源的 TiDB 学习之路原文来源:https://tidb.net/blog/594fccf8
关联子查询定义
关联子查询是指和外部查询有关联的子查询,即在子查询中使用了外部查询包含的列。在关联子查询中,对于外部查询返回的每一行数据,内部查询都要执行一次。
关联子查询具有以下几方面的特点:
信息流双向:关联子查询中的信息流是双向的。外部查询的每行数据传递一个值给子查询,子查询为每一行数据执行一次并返回记录,然后外部查询根据返回的记录做出决策。
灵活性:关联子查询可以使用关联列的灵活性,将 SQL 查询写成子查询的形式,这往往可以极大地简化 SQL 查询,并使 SQL 查询的语义更加方便理解。
执行挑战:为了计算关联结果的值(子查询的输出),关联子查询需要采用迭代(iterative)的执行方式。
以下是一个典型的关联子查询示例:
select * from t1 where t1.a < (select sum(t2.a) from t2 where t2.b = t1.b);
TiDB 关联子查询优化 -“子查询去关联”
关联子查询每次子查询执行时都是要和它的外部查询结果绑定的,因此,如果上述语句中 t1.a
有一千万个值,那这个子查询就要被重复执行一千万次,因为 t2.b=t1.b
这个条件会随着 t1.a
值的不同而发生变化。
如果能将关联依赖解除的话,这个子查询就只需要被执行一次。默认情况下,TiDB 会尝试进行子查询去关联,以达到更高的执行效率。以下是 TiDB 中针对这条语句生成的执行计划,可以看出 TiDB 的优化器将语句的执行计划生成了一个 Hash Join 关联方式。模拟 2 个表的数据量为 1 千万行进行测试时,语句的实际执行耗时约为 14 秒。
mysql> explain select * from t1 where t1.a < (select sum(t2.a) from t2 where t2.b = t1.b);
+--------------------------------+-----------+-----------+---------------+--------------------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+--------------------------------+-----------+-----------+---------------+--------------------------------------------------------------------------------------------------------------+
| HashJoin_12 | 452412.14 | root | | inner join, equal:[eq(test.t1.b, test.t2.b)], other cond:lt(cast(test.t1.a, decimal(10,0) BINARY), Column#7) |
| ├─TableReader_15(Build) | 452412.14 | root | | data:Selection_14 |
| │ └─Selection_14 | 452412.14 | cop[tikv] | | not(isnull(test.t1.b)) |
| │ └─TableFullScan_13 | 452865.00 | cop[tikv] | table:t1 | keep order:false, stats:pseudo |
| └─HashAgg_21(Probe) | 472411.12 | root | | group by:test.t2.b, funcs:sum(Column#8)->Column#7, funcs:firstrow(test.t2.b)->test.t2.b |
| └─TableReader_22 | 472411.12 | root | | data:HashAgg_16 |
| └─HashAgg_16 | 472411.12 | cop[tikv] | | group by:test.t2.b, funcs:sum(test.t2.a)->Column#8 |
| └─Selection_20 | 590513.90 | cop[tikv] | | not(isnull(test.t2.b)) |
| └─TableFullScan_19 | 591105.00 | cop[tikv] | table:t2 | keep order:false, stats:pseudo |
+--------------------------------+-----------+-----------+---------------+--------------------------------------------------------------------------------------------------------------+
9 rows in set (0.00 sec)
假如 TiDB 没有做子查询去关联的优化,实际执行情况又是怎么样呢?我们可以用 HINT /*+ NO_DECORRELATE() */ 来关闭子查询去关联,模拟未优化前的情况。此时得到如下的执行计划,其中 operator info 为 range: decided by [eq(test.t2.b, test.t1.b)] 的 IndexRangeScan_42 算子表示 TiDB 使用关联条件进行索引范围查询。同样的语句执行耗时超过 1 小时。
mysql> explain select * from t1 where t1.a < (select /*+ NO_DECORRELATE() */ sum(t2.a) from t2 where t2.b = t1.b);
+------------------------------------------+-----------+-----------+---------------------------+--------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+------------------------------------------+-----------+-----------+---------------------------+--------------------------------------------------------------------------------------+
| Projection_10 | 452865.00 | root | | test.t1.a, test.t1.b |
| └─Apply_12 | 452865.00 | root | | CARTESIAN inner join, other cond:lt(cast(test.t1.a, decimal(10,0) BINARY), Column#7) |
| ├─TableReader_14(Build) | 452865.00 | root | | data:TableFullScan_13 |
| │ └─TableFullScan_13 | 452865.00 | cop[tikv] | table:t1 | keep order:false, stats:pseudo |
| └─MaxOneRow_15(Probe) | 452865.00 | root | | |
| └─StreamAgg_20 | 452865.00 | root | | funcs:sum(Column#14)->Column#7 |
| └─Projection_45 | 857574.13 | root | | cast(test.t2.a, decimal(10,0) BINARY)->Column#14 |
| └─IndexLookUp_44 | 857574.13 | root | | |
| ├─IndexRangeScan_42(Build) | 857574.13 | cop[tikv] | table:t2, index:idx_t2(b) | range: decided by [eq(test.t2.b, test.t1.b)], keep order:false |
| └─TableRowIDScan_43(Probe) | 857574.13 | cop[tikv] | table:t2 | keep order:false |
+------------------------------------------+-----------+-----------+---------------------------+--------------------------------------------------------------------------------------+
10 rows in set (0.01 sec)
何时需要关闭 “子查询去关联”
那么,是不是所有的关联子查询语句在关联依赖解除优化后性能都能有较大的提升呢?并不是这样。仍然用上面的示例来说,在外部的值比较少的情况下,不解除关联依赖反而可能对执行性能更有帮助。例如,如果 t3 表只有 100 条记录时,以下语句执行耗时仅 0.28 秒。
mysql> explain analyze select * from t3 where t3.a = (select /*+ NO_DECORRELATE() */ sum(t2.a) from t2 where t2.b = t3.b);
+------------------------------------------+---------+---------+-----------+---------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------+-----------+------+
| id | estRows | actRows | task | access object | execution info | operator info | memory | disk |
+------------------------------------------+---------+---------+-----------+---------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------+-----------+------+
| Projection_11 | 100.00 | 0 | root | | time:277.9ms, loops:1, RU:117.173904, Concurrency:OFF | test.t3.a, test.t3.b | 3.55 KB | N/A |
| └─Apply_13 | 100.00 | 0 | root | | time:277.9ms, loops:1, concurrency:OFF, cache:ON, cacheHitRatio:0.000% | inner join, equal:[eq(Column#8, Column#7)] | 900 Bytes | N/A |
| ├─Projection_14(Build) | 100.00 | 100 | root | | time:1.61ms, loops:2, Concurrency:OFF | test.t3.a, test.t3.b, cast(test.t3.a, decimal(10,0) BINARY)->Column#8 | 1.82 KB | N/A |
| │ └─TableReader_16 | 100.00 | 100 | root | | time:1.56ms, loops:2, cop_task: {num: 1, max: 1.36ms, proc_keys: 100, tot_proc: 333.9µs, tot_wait: 146.6µs, copr_cache_hit_ratio: 0.00, build_task_duration: 18.3µs, max_distsql_concurrency: 1}, rpc_info:{Cop:{num_rpc:1, total_time:1.32ms}} | data:TableFullScan_15 | 1.86 KB | N/A |
| │ └─TableFullScan_15 | 100.00 | 100 | cop[tikv] | table:t3 | tikv_task:{time:0s, loops:3}, scan_detail: {total_process_keys: 100, total_process_keys_size: 4400, total_keys: 101, get_snapshot_time: 46.4µs, rocksdb: {delete_skipped_count: 100, key_skipped_count: 200, block: {cache_hit_count: 4}}}, time_detail: {total_process_time: 333.9µs, total_wait_time: 146.6µs, tikv_wall_time: 730.8µs} | keep order:false, stats:pseudo | N/A | N/A |
| └─MaxOneRow_17(Probe) | 100.00 | 100 | root | | time:265.2ms, loops:200 | | N/A | N/A |
| └─StreamAgg_22 | 100.00 | 100 | root | | time:264.7ms, loops:200 | funcs:sum(Column#16)->Column#7 | 8.75 KB | N/A |
| └─Projection_47 | 189.37 | 178 | root | | time:264ms, loops:176, Concurrency:OFF | cast(test.t2.a, decimal(10,0) BINARY)->Column#16 | 8.61 KB | N/A |
| └─IndexLookUp_46 | 189.37 | 178 | root | | time:263.1ms, loops:176, index_task: {total_time: 78.3ms, fetch_handle: 77.5ms, build: 124.7µs, wait: 629µs}, table_task: {total_time: 144.4ms, num: 76, concurrency: 5}, next: {wait_index: 90ms, wait_table_lookup_build: 7.42ms, wait_table_lookup_resp: 136.1ms} | | 26.4 KB | N/A |
| ├─IndexRangeScan_44(Build) | 189.37 | 178 | cop[tikv] | table:t2, index:idx_t2(b) | time:100ms, loops:252, cop_task: {num: 100, max: 1.38ms, min: 596.8µs, avg: 880.7µs, p95: 1.2ms, max_proc_keys: 8, p95_proc_keys: 5, tot_proc: 13.5ms, tot_wait: 9.62ms, copr_cache_hit_ratio: 0.00, build_task_duration: 2.07ms, max_distsql_concurrency: 1}, rpc_info:{Cop:{num_rpc:100, total_time:85.1ms}}, tikv_task:{proc max:10ms, min:0s, avg: 300µs, p80:0s, p95:0s, iters:100, tasks:100}, scan_detail: {total_process_keys: 178, total_process_keys_size: 8188, total_keys: 278, get_snapshot_time: 3.17ms, rocksdb: {key_skipped_count: 178, block: {cache_hit_count: 465}}}, time_detail: {total_process_time: 13.5ms, total_wait_time: 9.62ms, total_kv_read_wall_time: 30ms, tikv_wall_time: 41.8ms} | range: decided by [eq(test.t2.b, test.t3.b)], keep order:false | N/A | N/A |
| └─TableRowIDScan_45(Probe) | 189.37 | 178 | cop[tikv] | table:t2 | time:133.3ms, loops:152, cop_task: {num: 159, max: 9.38ms, min: 0s, avg: 753.7µs, p95: 1.13ms, max_proc_keys: 2, p95_proc_keys: 2, tot_proc: 18.6ms, tot_wait: 24.3ms, copr_cache_hit_ratio: 0.00, build_task_duration: 3.5ms, max_distsql_concurrency: 1, max_extra_concurrency: 1, store_batch_num: 34}, rpc_info:{Cop:{num_rpc:125, total_time:117ms}}, tikv_task:{proc max:10ms, min:0s, avg: 62.9µs, p80:0s, p95:0s, iters:159, tasks:159}, scan_detail: {total_process_keys: 178, total_process_keys_size: 8366, total_keys: 178, get_snapshot_time: 5.14ms, rocksdb: {block: {cache_hit_count: 798}}}, time_detail: {total_process_time: 18.6ms, total_wait_time: 24.3ms, total_kv_read_wall_time: 10ms, tikv_wall_time: 63.3ms} | keep order:false | N/A | N/A |
+------------------------------------------+---------+---------+-----------+---------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------+-----------+------+
11 rows in set (0.28 sec)
而如果走 TiDB 默认的解除关联依赖时,耗时约 5 秒,且存在 OOM 的风险。
mysql> explain analyze select * from t3 where t3.a = (select sum(t2.a) from t2 where t2.b = t3.b);
ERROR 8175 (HY000): Your query has been cancelled due to exceeding the allowed memory limit for a single SQL query. Please try narrowing your query scope or increase the tidb_mem_quota_query limit and try again.[conn=480325804]
mysql> set tidb_mem_quota_query=10737418240;
Query OK, 0 rows affected (0.00 sec)
mysql> explain analyze select * from t3 where t3.a = (select sum(t2.a) from t2 where t2.b = t3.b);
+--------------------------------+-------------+----------+-----------+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+---------+---------+
| id | estRows | actRows | task | access object | execution info | operator info | memory | disk |
+--------------------------------+-------------+----------+-----------+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+---------+---------+
| HashJoin_13 | 99.90 | 0 | root | | time:5.11s, loops:1, RU:11889.809066, build_hash_table:{total:1.48ms, fetch:1.36ms, build:122.2µs}, probe:{concurrency:5, total:25.5s, max:5.11s, probe:1.44s, fetch and wait:24.1s} | inner join, equal:[eq(test.t3.b, test.t2.b) eq(Column#8, Column#7)] | 46.0 KB | 0 Bytes |
| ├─Projection_14(Build) | 99.90 | 100 | root | | time:1.26ms, loops:2, Concurrency:OFF | test.t3.a, test.t3.b, cast(test.t3.a, decimal(10,0) BINARY)->Column#8 | 2.52 KB | N/A |
| │ └─TableReader_17 | 99.90 | 100 | root | | time:1.22ms, loops:2, cop_task: {num: 1, max: 1.38ms, proc_keys: 100, tot_proc: 353µs, tot_wait: 129.8µs, copr_cache_hit_ratio: 0.00, build_task_duration: 24.3µs, max_distsql_concurrency: 1}, rpc_info:{Cop:{num_rpc:1, total_time:1.33ms}} | data:Selection_16 | 1.87 KB | N/A |
| │ └─Selection_16 | 99.90 | 100 | cop[tikv] | | tikv_task:{time:0s, loops:3}, scan_detail: {total_process_keys: 100, total_process_keys_size: 4400, total_keys: 101, get_snapshot_time: 49.9µs, rocksdb: {delete_skipped_count: 100, key_skipped_count: 200, block: {cache_hit_count: 4}}}, time_detail: {total_process_time: 353µs, total_wait_time: 129.8µs, tikv_wall_time: 716.5µs} | not(isnull(test.t3.b)) | N/A | N/A |
| │ └─TableFullScan_15 | 100.00 | 100 | cop[tikv] | table:t3 | tikv_task:{time:0s, loops:3} | keep order:false, stats:pseudo | N/A | N/A |
| └─HashAgg_28(Probe) | 5280768.00 | 5343857 | root | | time:5.09s, loops:5222, partial_worker:{wall_time:2.494534938s, concurrency:5, task_num:285, tot_wait:215.654904ms, tot_exec:12.25579073s, tot_time:12.47193031s, max:2.494394166s, p95:2.494394166s}, final_worker:{wall_time:5.107395873s, concurrency:5, task_num:25, tot_wait:70.452µs, tot_exec:8.250691502s, tot_time:24.968242542s, max:5.107349993s, p95:5.107349993s} | group by:test.t2.b, funcs:sum(Column#11)->Column#7, funcs:firstrow(test.t2.b)->test.t2.b | 1.95 GB | 0 Bytes |
| └─TableReader_29 | 5280768.00 | 9972967 | root | | time:225.2ms, loops:286, cop_task: {num: 285, max: 157.9ms, min: 470.7µs, avg: 55.1ms, p95: 83.7ms, max_proc_keys: 50176, p95_proc_keys: 50176, tot_proc: 13.8s, tot_wait: 51ms, copr_cache_hit_ratio: 0.04, build_task_duration: 41.8µs, max_distsql_concurrency: 11}, rpc_info:{Cop:{num_rpc:285, total_time:15.7s}} | data:HashAgg_21 | 25.2 MB | N/A |
| └─HashAgg_21 | 5280768.00 | 9972967 | cop[tikv] | | tikv_task:{proc max:90ms, min:0s, avg: 46.7ms, p80:70ms, p95:70ms, iters:9769, tasks:285}, scan_detail: {total_process_keys: 9982592, total_process_keys_size: 469050751, total_keys: 9982867, get_snapshot_time: 19.6ms, rocksdb: {delete_skipped_count: 874, key_skipped_count: 9983466, block: {cache_hit_count: 18229}}}, time_detail: {total_process_time: 13.8s, total_suspend_time: 37.8ms, total_wait_time: 51ms, total_kv_read_wall_time: 9.13s, tikv_wall_time: 14.3s} | group by:test.t2.b, funcs:sum(test.t2.a)->Column#11 | N/A | N/A |
| └─Selection_27 | 10000000.00 | 10000000 | cop[tikv] | | tikv_task:{proc max:70ms, min:0s, avg: 33.2ms, p80:50ms, p95:60ms, iters:9769, tasks:285} | not(isnull(test.t2.b)) | N/A | N/A |
| └─TableFullScan_26 | 10000000.00 | 10000000 | cop[tikv] | table:t2 | tikv_task:{proc max:70ms, min:0s, avg: 32ms, p80:50ms, p95:60ms, iters:9769, tasks:285} | keep order:false | N/A | N/A |
+--------------------------------+-------------+----------+-----------+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------+---------+---------+
10 rows in set (5.12 sec)
全局关闭 “子查询去关联”
/*+ NO_DECORRELATE() */ HINT 是一种针对具体 SQL 级别来关闭子查询去关联的方式,TiDB 也提供另外一种可以全局关闭的方式,它是直接将子查询去关联的规则加入到黑名单中。
关于优化规则黑名单的使用,可以参考 TiDB 官网文档 https://docs.pingcap.com/zh/tidb/v7.5/blocklist-control-plan。如果希望全局关闭子查询去关联的功能,需要执行以下命令,此后不需要使用 /*+ NO_DECORRELATE() */ 这个 HINT 我们也同样可以获得具有子查询关联的执行计划。
insert into mysql.opt_rule_blacklist values("decorrelate");
admin reload opt_rule_blacklist;
总结
本文通过实践说明 TiDB 默认针对关联子查询有自动解除关联依赖的优化操作,当涉及查询条件的数据量较大时,将重复执行无数次的子查询转化为只需执行一次,从而大大缩减了执行耗时。然而,如果满足查询条件的数据量很小的话,这种优化方式可能会造成相反的效果,此时我们则需要借助 /*+ NO_DECORRELATE() */ 来关闭 “子查询去关联” 的优化,也可以通过全局添加规则黑名单的方式实现全局控制。本文参考 TiDB 官网文档 https://docs.pingcap.com/zh/tidb/v7.5/correlated-subquery-optimization
版权声明: 本文为 InfoQ 作者【TiDB 社区干货传送门】的原创文章。
原文链接:【http://xie.infoq.cn/article/93b2b7d227917282a7adb2dd6】。文章转载请联系作者。
TiDB 社区干货传送门
TiDB 社区官网:https://tidb.net/ 2021-12-15 加入
TiDB 社区干货传送门是由 TiDB 社区中布道师组委会自发组织的 TiDB 社区优质内容对外宣布的栏目,旨在加深 TiDBer 之间的交流和学习。一起构建有爱、互助、共创共建的 TiDB 社区 https://tidb.net/
评论