java 培训:判断元素是不是在集合里的方法
如何快速判断一个元素是不是在一个集合里?这个题目是我最近面试的时候常问的一个问题,这个问题不同人都有很多不同的回答。
今天想介绍一个很少有人会提及到的方案,那就是借助布隆过滤器。
什么叫布隆过滤器
布隆过滤器(Bloom Filter)是一个叫做 Bloom 的老哥于 1970 年提出的。
实际上可以把它看作由二进制向量(或者说位数组)和一系列随机映射函数(哈希函数)两部分组成的数据结构。
它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。
实现原理
先来一张图
布隆过滤器算法主要思想就是利用 n 个哈希函数进行 hash 过后,得到不同的哈希值,根据 hash 映射到数组(这个数组的长度可能会很长很长)的不同的索引位置上,然后将相应的索引位上的值设置为 1。
判断该元素是否出现在集合中,就是利用 k 个不同的哈希函数计算哈希值,java培训看哈希值对应相应索引位置上面的值是否是 1,如果有 1 个不是 1,说明该元素不存在在集合中。
但是也有可能判断元素在集合中,但是元素不在,这个元素所有索引位置上面的 1 都是别的元素设置的,这就导致一定的误判几率(这就是为什么上面是活可能在一个集合中的根本原因,因为会存在一定的 hash 冲突)。
注意:误判率越低,相应的性能就会越低。
作用
布隆过滤器是可以用于判断一个元素是不是(可能)在一个集合里,并且相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。
注意上面的一个词:可能。这里先预留一个悬念,下文会详细分析到。
使用场景
判断给定数据是否存在
防止缓存穿透(判断请求的数据是否有效避免直接绕过缓存请求数据库)等等、邮箱的垃圾邮件过滤、黑名单功能等等。
具体实现
看完了布隆过滤器的算法思想,那就开始具体的实现的讲解。
我先来举个例子,假设有旺财和小强两个字符串,他们分别经过三次的 hash 算法,然后根据 hash 的结果将对应的数组(假设数组长度为 16)的索引位置的值置为 1,先来看下旺财这个词组:
旺财经过三次 hash 过后,值分别为 2,4,6 那么根据可以得到索引值分别为 2、4、6,于是就将该数组的索引(2、4、6)位置的值置为 1,其余当做是 0,现在假设需要查找旺财 ,同样经过这个三个 hash 然后发现得到的索引 2、4、6 对应的位置的值都为 1,那么可以判断旺财可能是存在的。
接着有将小强插入到布隆过滤器中,实际的过程和上面的一样,假设得到的下标是 1、3、5
抛开旺财的存在,小强此时是这样子在布隆过滤器中的,结合旺财和小强实际的数组是这样子的:
现在有来一个数据:9527,现在要求是判断 9527 是否存在,假设 9527 经过三次 hash 过后得到的下标分别为:5、6、7。结果发现下标为 7 的位置的值为 0,那么可以肯定的判断出,9527 一定不存在。
接着又来了一个 国产 007,经过三次 hash 过后得到的下标分别为:2、3、5,结果发现 2、3、5 下标对应的值全是 1,于是可以大致判断出 国产 007 可能存在。但是实际上经过我们刚刚的演示,国产 007 根本就不存在,之所以 2、3、5 索引位置的值为 1 ,那是因为其他的数据设置的。
说到这里,不知道大家有没有明白布隆过滤器的作用。
代码的实现
作为 java 程序员,我们真的是很幸福了,我们使用到很多的框架和工具,基本都被封装好了,布隆过滤器,我们就使用 google 封装好的工具类。
首先添加依赖
<!--布隆过滤依赖-->
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>25.1-jre</version>
</dependency>
代码的实现
import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
import java.nio.charset.Charset;
public class BloomFilterDemo {
public static void main(String[] args) {
/**
* 创建一个插入对象为一亿,误报率为 0.01%的布隆过滤器
* 不存在一定不存在
* 存在不一定存在
* ----------------
* Funnel 对象:预估的元素个数,误判率
* mightContain :方法判断元素是否存在
*/
BloomFilter<CharSequence> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charset.forName("utf-8")), 100000000, 0.0001);
bloomFilter.put("死");
bloomFilter.put("磕");
bloomFilter.put("Redis");
System.out.println(bloomFilter.mightContain("Redis"));
System.out.println(bloomFilter.mightContain("Java"));
}
}
具体的解释已经写在注释中了。到这里相信大家一定明白了布隆过滤器和其怎么使用了。
实战
我们来模拟这样的场景:通过布隆过滤器来解决缓存穿透。
首先你的知道什么叫缓存穿透吧?
缓存穿透是指用户访问一个缓存和数据库中都没有的数据,因为缓存中不存在,所以就会去访问数据库,如果并发很高。很容易会击垮数据库
那布隆过滤器是如何解决这个问题的呢?他
的原理是这样子的:将数据库中所有的查询条件,放入布隆过滤器中,当一个查询请求过来时,先经过布隆过滤器进行查,如果判断请求查询值存在,则继续查;如果判断请求查询不存在,直接丢弃。
其代码如下:
String get(String key) {
String value = redis.get(key);
if (value == null) {
if(!bloomfilter.mightContain(key)){
return null;
}else{
value = db.get(key);
redis.set(key, value);
}
}
return value;
}
文章来源于 Java 编程
评论