写点什么

LiteOS:剖析时间管理模块源代码

发布于: 2021 年 03 月 22 日

​​​​​​​​​​​​摘要:HuaweiLiteOS 的时间管理模块以系统时钟为基础,分为 2 部分,一部分是 SysTick 中断,为任务调度提供必要的时钟节拍;另外一部分是,给应用程序提供所有和时间有关的服务,如时间转换、统计、延迟功能。


本文分享自华为云社区《LiteOS内核源码分析系列四 LiteOS内核源码分析--时间管理》,原文作者:zhushy 。


Huawei LiteOS的时间管理模块以系统时钟为基础,可以分为 2 部分,一部分是SysTick中断,为任务调度提供必要的时钟节拍;另外一部分是,给应用程序提供所有和时间有关的服务,如时间转换、统计、延迟功能。


系统时钟是由定时器/计数器产生的输出脉冲触发中断产生的,一般定义为整数或长整数。输出脉冲的周期叫做一个“时钟滴答”,也称为时标或者TickTick是操作系统的基本时间单位,由用户配置的每秒Tick数决定。如果用户配置每秒的 Tick 数目为 1000,则 1 个Tick等于 1ms 的时长。另外一个计时单位是Cycle,这是系统最小的计时单位。Cycle的时长由系统主时钟频率决定,系统主时钟频率就是每秒钟的Cycle数,对于 216 MHz 的CPU,1 秒产生 216000000 个cycles


用户以秒、毫秒为单位计时,而操作系统以Tick为单位计时,当用户需要对系统进行操作时,例如任务挂起、延时等,此时可以使用时间管理模块对Tick和秒/毫秒进行转换。


文中所涉及的源代码,均可以在LiteOS开源站点https://gitee.com/LiteOS/LiteOS 获取。位操作模块源代码、开发文档如下:


  • 内核时间管理源代码

时间管理模块源文件,包括头文件 kernel\include\los_tick.h、私有头文件[kernel\base\include\los_tick_pri.h(https://gitee.com/LiteOS/LiteOS/blob/master/kernel/base/include/los_tick_pri.hC源代码文件 kernel\base\los_tick.c。


  • 开发指南时间管理模块文档

在线文档https://gitee.com/LiteOS/LiteOS/blob/feature/doc/HuaweiLiteOSKernelDeveloperGuide_zh.md#%E6%97%B6%E9%97%B4%E7%AE%A1%E7%90%86。


下面,我们剖析下时间管理模块的源代码,以LiteOS开源工程支持的板子之一STM32F769IDiscovery为例进行源码分析。

1、时间管理初始化和启动。


我们先看下时间管理模块的相关配置,然后再剖析如何初始化,如何启动。

1.1 时间管理相关的配置


时间管理模块依赖系统时钟OS_SYS_CLOCK和每秒Tick数目LOSCFG_BASE_CORE_TICK_PER_SECOND两个配置选项。在系统启动时,targets\STM32F769IDISCOVERY\Src\main.cmain()函数调用targets\STM32F769IDISCOVERY\Src\platform_init.c文件中的void HardwareInit(void)进行硬件初始化,初始化时会调用void SystemClock_Config(void)进行系统时钟的配置。完成系统时钟的配置后,SystemCoreClock赋值为216000000Hz。通过下面两个宏定义,OS_SYS_CLOCK也表示系统时钟。


文件kernel\include\los_config.h:

/** * @ingroup los_config * System clock (unit: HZ) */#ifndef OS_SYS_CLOCK#define OS_SYS_CLOCK (get_bus_clk())#endif
复制代码


文件targets\STM32F769IDISCOVERY\include\hisoc\clock.h:

#define get_bus_clk() SystemCoreClock // default: 216000000
复制代码


另外一个配置项,每秒Tick数目LOSCFG_BASE_CORE_TICK_PER_SECOND,用户可以通过LiteOS提供的组件配置工具menuconfig进行设置,配置路径在Kernel → Basic Config → Task → Tick Value Per Second,支持的开发板也提供了默认值。

1.2 时间管理初始化 OsTickInit()


在系统启动时,在kernel\init\los_init.c中调用VOID OsRegister(VOID)设置系统时钟、Tick配置。⑴处全局变量g_tickPerSecond赋值为LOSCFG_BASE_CORE_TICK_PER_SECOND,也表示每秒配置多少个Tick。⑵处的宏定义把OS_SYS_CLOCK赋值给g_sysClock,都表示系统时钟。后文的代码解析会涉及这些变量的使用。

LITE_OS_SEC_TEXT_INIT static VOID OsRegister(VOID){#ifdef LOSCFG_LIB_CONFIGURABLE    g_osSysClock            = OS_SYS_CLOCK_CONFIG;    g_tickPerSecond         = LOSCFG_BASE_CORE_TICK_PER_SECOND_CONFIG;    g_taskLimit             = LOSCFG_BASE_CORE_TSK_LIMIT_CONFIG;    g_taskMaxNum            = g_taskLimit + 1;    g_taskMinStkSize        = LOSCFG_BASE_CORE_TSK_MIN_STACK_SIZE_CONFIG;    g_taskIdleStkSize       = LOSCFG_BASE_CORE_TSK_IDLE_STACK_SIZE_CONFIG;    g_taskDfltStkSize       = LOSCFG_BASE_CORE_TSK_DEFAULT_STACK_SIZE_CONFIG;    g_taskSwtmrStkSize      = LOSCFG_BASE_CORE_TSK_SWTMR_STACK_SIZE_CONFIG;    g_swtmrLimit            = LOSCFG_BASE_CORE_SWTMR_LIMIT_CONFIG;    g_semLimit              = LOSCFG_BASE_IPC_SEM_LIMIT_CONFIG;    g_muxLimit              = LOSCFG_BASE_IPC_MUX_LIMIT_CONFIG;    g_queueLimit            = LOSCFG_BASE_IPC_QUEUE_LIMIT_CONFIG;    g_timeSliceTimeOut      = LOSCFG_BASE_CORE_TIMESLICE_TIMEOUT_CONFIG;#else⑴  g_tickPerSecond         = LOSCFG_BASE_CORE_TICK_PER_SECOND;#endif⑵  SET_SYS_CLOCK(OS_SYS_CLOCK);
#ifdef LOSCFG_KERNEL_NX LOS_SET_NX_CFG(true);#else LOS_SET_NX_CFG(false);#endif LOS_SET_DL_NX_HEAP_BASE(LOS_DL_HEAP_BASE); LOS_SET_DL_NX_HEAP_SIZE(LOS_DL_HEAP_SIZE);
return;}
复制代码


kernel\init\los_init.c中会继续调用UINT32 OsTickInit(UINT32 systemClock, UINT32 tickPerSecond)来初始化时间配置。该函数需要 2 个参数,分别是上文配置的系统时钟和每秒的tick数。进一步调用HalClockInit()函数。

LITE_OS_SEC_TEXT_INIT UINT32 OsTickInit(UINT32 systemClock, UINT32 tickPerSecond){    if ((systemClock == 0) ||        (tickPerSecond == 0) ||        (tickPerSecond > systemClock)) {        return LOS_ERRNO_TICK_CFG_INVALID;    }    HalClockInit();
return LOS_OK;}
复制代码

HalClockInit()函数定义在targets\bsp\hw\arm\timer\arm_cortex_m\systick.c,使用LOS_HwiCreate()为中断号M_INT_NUM创建一个中断,每一个Tick中断发生时,都会调用中断处理程序OsTickHandler(),这个函数后文会分析。

#define M_INT_NUM  15
VOID HalClockInit(VOID){ UINT32 ret = LOS_HwiCreate(M_INT_NUM, 0, 0, OsTickHandler, 0); if (ret != 0) { PRINTK("ret of LOS_HwiCreate = %#x\n", ret); }#if defined (LOSCFG_ARCH_ARM_CORTEX_M) && (LOSCFG_KERNEL_CPUP) TimerHwiCreate();#endif}
复制代码

1.3 时间管理模块启动 OsTickStart()


在系统开始调度之前,函数INT32 main(VOID)会调用系统启动函数VOID OsStart(VOID),它会调用时间模块启动函数OsTickStart(),进一步调用HalClockStart()。我们分析下函数的代码实现。

⑴处全局变量g_cyclesPerTick表示每Tick对应的cycle数目。⑵处函数定义在arch\arm\cortex_m\cmsis\core_cm7.h文件中,初始化系统定时器Systick并启动,Systick相关的代码自行阅读。⑶处调用LOS_HwiEnable()函数使能Tick中断。


文件kernel\base\los_tick.c

LITE_OS_SEC_TEXT_INIT VOID OsTickStart(VOID){    HalClockStart();}
复制代码


文件targets\bsp\hw\arm\timer\arm_cortex_m\systick.c:

VOID HalClockStart(VOID){    if ((OS_SYS_CLOCK == 0) ||        (LOSCFG_BASE_CORE_TICK_PER_SECOND == 0) ||        (LOSCFG_BASE_CORE_TICK_PER_SECOND > OS_SYS_CLOCK)) {        return;    }
⑴ g_cyclesPerTick = OS_CYCLE_PER_TICK;
⑵ (VOID)SysTick_Config(OS_CYCLE_PER_TICK);
⑶ UINT32 ret = LOS_HwiEnable(M_INT_NUM); if (ret != 0) { PRINTK("LOS_HwiEnable failed. ret = %#x\n", ret); }}
复制代码

1.4 Tick 中断处理函数 OsTickHandler()


这是时间管理模块中执行最频繁的函数VOID OsTickHandler(VOID),每当Tick中断发生时就会调用该函数。⑴处会更新全局数组全局数组g_tickCount每个核的tick数据。⑵和tickless特性相关,后续系列分析。⑶处会遍历任务的排序链表,检查是否有超时的任务。⑷处如果支持定时器特性,会检查定时器排序链表中的定时器是否超时。

LITE_OS_SEC_TEXT VOID OsTickHandler(VOID){    UINT32 intSave;
TICK_LOCK(intSave);⑴ g_tickCount[ArchCurrCpuid()]++; TICK_UNLOCK(intSave);
#ifdef LOSCFG_KERNEL_TICKLESS⑵ OsTickIrqFlagSet(OsTicklessFlagGet());#endif
#if (LOSCFG_BASE_CORE_TICK_HW_TIME == YES) HalClockIrqClear(); /* diff from every platform */#endif
#ifdef LOSCFG_BASE_CORE_TIMESLICE OsTimesliceCheck();#endif
⑶ OsTaskScan(); /* task timeout scan */
#if (LOSCFG_BASE_CORE_SWTMR == YES)⑷ OsSwtmrScan();#endif}
复制代码

2、LiteOS内核时间管理常用操作


Huawei LiteOS的时间管理提供下面几种功能,时间转换、时间统计、延时管理等,我们剖析下这些接口的源代码实现。

2.1 时间转换操作

2.1.1 毫秒转换成 Tick


函数UINT32 LOS_MS2Tick(UINT32 millisec)把输入参数毫秒数UINT32 millisec可以转化为Tick数目。代码中OS_SYS_MS_PER_SECOND,即 1 秒等于 1000 毫秒。时间转换也比较简单,知道一秒多少Tick,除以OS_SYS_MS_PER_SECOND,得出 1 毫秒多少Tick,然后乘以millisec,计算出结果值。

LITE_OS_SEC_TEXT_MINOR UINT32 LOS_MS2Tick(UINT32 millisec){    if (millisec == UINT32_MAX) {        return UINT32_MAX;    }
return (UINT32)(((UINT64)millisec * LOSCFG_BASE_CORE_TICK_PER_SECOND) / OS_SYS_MS_PER_SECOND);}
复制代码

2.1.2 Tick 转化为毫秒


函数UINT32 LOS_Tick2MS(UINT32 tick)把输入参数Tick数目转换为毫秒数。时间转换也比较简单,tick除以LOSCFG_BASE_CORE_TICK_PER_SECOND,计算出多少秒,然后转换成毫秒,计算出结果值。

LITE_OS_SEC_TEXT_MINOR UINT32 LOS_Tick2MS(UINT32 tick){    return (UINT32)(((UINT64)tick * OS_SYS_MS_PER_SECOND) / LOSCFG_BASE_CORE_TICK_PER_SECOND);}
复制代码

2.2 时间统计操作

2.2.1 每个 Tick 多少 Cycle 数


函数UINT32 LOS_CyclePerTickGet(VOID)计算 1 个tick等于多少cycleg_sysClock系统时钟表示 1 秒多少cycleLOSCFG_BASE_CORE_TICK_PER_SECOND一秒多少tick,相除计算出1 tick多少cycle数。

LITE_OS_SEC_TEXT_MINOR UINT32 LOS_CyclePerTickGet(VOID){    return g_sysClock / LOSCFG_BASE_CORE_TICK_PER_SECOND;}
复制代码

2.2.2 获取自系统启动以来的 Tick 数


UINT64 LOS_TickCountGet(VOID)函数计算自系统启动以来的Tick数。需要注意,在关中断的情况下不进行计数,不能作为准确时间使用。全局数组UINT64 g_tickCount[LOSCFG_KERNEL_CORE_NUM]记录每一个核的自系统启动以来的Tick数,每次 Tick 中断发生时,在函数VOID OsTickHandler(VOID)中会更新这个数组的数据。我们取第一个核的Tick数作为返回结果。

LITE_OS_SEC_TEXT_MINOR UINT64 LOS_TickCountGet(VOID){    UINT32 intSave;    UINT64 tick;    TICK_LOCK(intSave);    tick = g_tickCount[0];    TICK_UNLOCK(intSave);
return tick;}
复制代码

2.2.3 获取自系统启动以来的 Cycle 数


VOID LOS_GetCpuCycle(UINT32 *highCnt, UINT32 *lowCnt)函数获取自系统启动以来的Cycle数。这个函数调用定义在文件targets\bsp\hw\arm\timer\arm_cortex_m\systick.c中的HalClockGetCycles()函数获取 64 位的无符号整数。返回结果按高低 32 位的无符号数值UINT32 *highCnt, UINT32 *lowCnt分别返回。

LITE_OS_SEC_TEXT_MINOR VOID LOS_GetCpuCycle(UINT32 *highCnt, UINT32 *lowCnt){    UINT64 cycle;
if ((highCnt == NULL) || (lowCnt == NULL)) { return; } cycle = HalClockGetCycles();
/* get the high 32 bits */ *highCnt = (UINT32)(cycle >> 32); /* get the low 32 bits */ *lowCnt = (UINT32)(cycle & 0xFFFFFFFFULL);}
复制代码


我们继续看下函数HalClockGetCycles()函数。先关中断,然后⑴处获取启动启动以来的Tick数目。⑵处通过读取当前值寄存器SysTick Current Value Register,获取hwCycle

⑷ cycle = (swTick * g_cyclesPerTick) + (g_cyclesPerTick - hwCycle);

⑶处表示中断控制和状态寄存器Interrupt Control and State Register的第TICK_INTR_CHECK位为 1 时,表示挂起systick中断,tick没有计数,需要加 1 校准。⑷处根据swTickg_cyclesPerTickhwCycle计算出自系统启动以来的 Cycle 数。

UINT64 HalClockGetCycles(VOID){    UINT64 swTick;    UINT64 cycle;    UINT32 hwCycle;    UINT32 intSave;
intSave = LOS_IntLock();
⑴ swTick = LOS_TickCountGet();⑵ hwCycle = SysTick->VAL;
⑶ if ((SCB->ICSR & TICK_INTR_CHECK) != 0) { hwCycle = SysTick->VAL; swTick++; }
⑷ cycle = (swTick * g_cyclesPerTick) + (g_cyclesPerTick - hwCycle); LOS_IntRestore(intSave);#if defined (LOSCFG_ARCH_ARM_CORTEX_M) && (LOSCFG_KERNEL_CPUP) cycle = HalClockGetCpupCycles() * TIMER_CYCLE_SWITCH;#endif return cycle;}
复制代码

2.2.4 获取自系统启动以来的纳秒数


函数UINT64 LOS_CurrNanosec(VOID)计算获取自系统启动以来的纳秒数。HalClockGetCycles()获取自系统启动以来的Cycle数,除以表示每秒多少cycle的系统时钟g_sysClock,可以计算出自系统启动以来的秒数,然后乘以秒和纳秒的换算关系OS_SYS_NS_PER_SECOND,即可获取自系统启动以来的纳秒数。代码中出现 2 次除以OS_SYS_NS_PER_MS,来减小中间值避免数值溢出。

LITE_OS_SEC_TEXT_MINOR UINT64 LOS_CurrNanosec(VOID){    UINT64 nanos;    nanos = HalClockGetCycles() * (OS_SYS_NS_PER_SECOND / OS_SYS_NS_PER_MS) / (g_sysClock / OS_SYS_NS_PER_MS);    return nanos;}
复制代码

2.3 延时管理

2.3.1 LOS_Udelay()微秒等待


us为单位的忙等,但可以被优先级更高的任务抢占。该函数VOID LOS_Udelay(UINT32 usecs)进一步调用targets\bsp\hw\arm\timer\arm_cortex_m\systick.c文件中定义的函数VOID HalDelayUs(UINT32 usecs)

LITE_OS_SEC_TEXT_MINOR VOID LOS_Udelay(UINT32 usecs){    HalDelayUs(usecs);}
复制代码


继续分析下函数VOID HalDelayUs(UINT32 usecs)。微秒转换为纳秒,计算当前的纳秒数值,然后while循环,使用汇编指令空操作,等待超时。

VOID HalDelayUs(UINT32 usecs){    UINT64 tmo = LOS_CurrNanosec() + usecs * OS_SYS_NS_PER_US;
while (LOS_CurrNanosec() < tmo) { __asm__ volatile ("nop"); }}
复制代码

2.3.2 LOS_Mdelay()毫秒等待


ms为单位的忙等,但可以被优先级更高的任务抢占。该函数把参数UINT32 msecs毫秒转换为微妙,需要考虑数值溢出的问题。

LITE_OS_SEC_TEXT_MINOR VOID LOS_Mdelay(UINT32 msecs){    UINT32 delayUs = (UINT32_MAX / OS_SYS_US_PER_MS) * OS_SYS_US_PER_MS;
while (msecs > UINT32_MAX / OS_SYS_US_PER_MS) { HalDelayUs(delayUs); msecs -= (UINT32_MAX / OS_SYS_US_PER_MS); } HalDelayUs(msecs * OS_SYS_US_PER_MS);}
复制代码

小结


本文带领大家一起剖析了LiteOS时间管理模块的源代码。时间管理模块为任务调度提供必要的时钟节拍,会向应用程序提供所有和时间有关的服务,如时间转换、统计、延迟功能。


感谢阅读,如有任何问题、建议,都可以留言给我们: https://gitee.com/LiteOS/LiteOS/issues 。为了更容易找到LiteOS代码仓,建议访问 https://gitee.com/LiteOS/LiteOS ,关注Watch、点赞Star、并Fork到自己账户下,如下图,谢谢。



点击关注,第一时间了解华为云新鲜技术~


发布于: 2021 年 03 月 22 日阅读数: 13
用户头像

提供全面深入的云计算技术干货 2020.07.14 加入

华为云开发者社区,提供全面深入的云计算前景分析、丰富的技术干货、程序样例,分享华为云前沿资讯动态,方便开发者快速成长与发展,欢迎提问、互动,多方位了解云计算! 传送门:https://bbs.huaweicloud.com/

评论

发布
暂无评论
LiteOS:剖析时间管理模块源代码