写点什么

详解布隆过滤器的原理和实现

作者:万俊峰Kevin
  • 2021 年 12 月 07 日
  • 本文字数:5429 字

    阅读完需:约 18 分钟

为什么需要布隆过滤器

想象一下遇到下面的场景你会如何处理:

  1. 手机号是否重复注册

  2. 用户是否参与过某秒杀活动

  3. 伪造请求大量 id 查询不存在的记录,此时缓存未命中,如何避免缓存穿透

针对以上问题常规做法是:查询数据库,数据库硬扛,如果压力并不大可以使用此方法,保持简单即可。

改进做法:用 list/set/tree 维护一个元素集合,判断元素是否在集合内,时间复杂度或空间复杂度会比较高。如果是微服务的话可以用 redis 中的 list/set 数据结构, 数据规模非常大此方案的内存容量要求可能会非常高。

这些场景有个共同点,可以将问题抽象为:如何高效判断一个元素不在集合中?那么有没有一种更好方案能达到时间复杂度和空间复杂双优呢?

有!布隆过滤器

什么是布隆过滤器

布隆过滤器(英语:Bloom Filter)是 1970 年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中,它的优点是空间效率和查询时间都远远超过一般的算法。

工作原理

布隆过滤器的原理是,当一个元素被加入集合时,通过 K 个散列函数将这个元素映射成一个位数组中的 K 个点(offset),把它们置为 1。检索时,我们只要看看这些点是不是都是 1 就(大约)知道集合中有没有它了:如果这些点有任何一个 0,则被检元素一定不在;如果都是 1,则被检元素很可能在。这就是布隆过滤器的基本思想。

简单来说就是准备一个长度为 m 的位数组并初始化所有元素为 0,用 k 个散列函数对元素进行 k 次散列运算跟 len(m)取余得到 k 个位置并将 m 中对应位置设置为 1。


布隆过滤器优缺点

优点:

  1. 空间占用极小,因为本身不存储数据而是用比特位表示数据是否存在,某种程度有保密的效果。

  2. 插入与查询时间复杂度均为 O(k),常数级别,k 表示散列函数执行次数。

  3. 散列函数之间可以相互独立,可以在硬件指令层加速计算。

缺点:

  1. 误差(假阳性率)。

  2. 无法删除。

误差(假阳性率)

布隆过滤器可以 100% 判断元素不在集合中,但是当元素在集合中时可能存在误判,因为当元素非常多时散列函数产生的 k 位点可能会重复。维基百科有关于假阳性率的数学推导(见文末链接)这里我们直接给结论(实际上是我没看懂...),假设:

  • 位数组长度 m

  • 散列函数个数 k

  • 预期元素数量 n

  • 期望误差_ε_

在创建布隆过滤器时我们为了找到合适的 m 和 k ,可以根据预期元素数量 n 与 ε 来推导出最合适的 m 与 k 。


java 中 Guava, Redisson 实现布隆过滤器估算最优 m 和 k 采用的就是此算法:

// 计算哈希次数@VisibleForTestingstatic int optimalNumOfHashFunctions(long n, long m) {    // (m / n) * log(2), but avoid truncation due to division!    return Math.max(1, (int) Math.round((double) m / n * Math.log(2)));}
// 计算位数组长度@VisibleForTestingstatic long optimalNumOfBits(long n, double p) {    if (p == 0) {        p = Double.MIN_VALUE;    }    return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));}
复制代码

无法删除

位数组中的某些 k 点是多个元素重复使用的,假如我们将其中一个元素的 k 点全部置为 0 则直接就会影响其他元素。这导致我们在使用布隆过滤器时无法处理元素被删除的场景。​

可以通过定时重建的方式清除脏数据。假如是通过 redis 来实现的话重建时不要直接删除原有的 key,而是先生成好新的再通过 rename 命令即可,再删除旧数据即可。

go-zero 中的 bloom filter 源码分析

core/bloom/bloom.go​一个布隆过滤器具备两个核心属性:

  1. 位数组:

  2. 散列函数

go-zero 实现的bloom filter中位数组采用的是Redis.bitmap,既然采用的是 redis 自然就支持分布式场景,散列函数采用的是MurmurHash3

Redis.bitmap 为什么可以作为位数组呢?

Redis 中的并没有单独的 bitmap 数据结构,底层使用的是动态字符串(SDS)实现,而 Redis 中的字符串实际都是以二进制存储的。aASCII码是 97,转换为二进制是:01100001,如果我们要将其转换为b只需要进一位即可:01100010。下面通过Redis.setbit实现这个操作:

set foo aOKget foo"a"setbit foo 6 10setbit foo 7 01get foo"b"

bitmap 底层使用的动态字符串可以实现动态扩容,当 offset 到高位时其他位置 bitmap 将会自动补 0,最大支持 2^32-1 长度的位数组(占用内存 512M),需要注意的是分配大内存会阻塞Redis进程。根据上面的算法原理可以知道实现布隆过滤器主要做三件事情:

  1. k 次散列函数计算出 k 个位点。

  2. 插入时将位数组中 k 个位点的值设置为 1。

  3. 查询时根据 1 的计算结果判断 k 位点是否全部为 1,否则表示该元素一定不存在。

下面来看看 go-zero 是如何实现的:

对象定义

// 表示经过多少散列函数计算// 固定14次maps = 14
type (    // 定义布隆过滤器结构体    Filter struct {        bits   uint        bitSet bitSetProvider    }    // 位数组操作接口定义    bitSetProvider interface {        check([]uint) (bool, error)        set([]uint) error    })
复制代码

位数组操作接口实现

首先需要理解两段 lua 脚本:

// ARGV:偏移量offset数组// KYES[1]: setbit操作的key// 全部设置为1setScript = `    for _, offset in ipairs(ARGV) do        redis.call("setbit", KEYS[1], offset, 1)    end    `// ARGV:偏移量offset数组// KYES[1]: setbit操作的key// 检查是否全部为1testScript = `    for _, offset in ipairs(ARGV) do        if tonumber(redis.call("getbit", KEYS[1], offset)) == 0 then            return false        end    end    return true    `
复制代码

为什么一定要用 lua 脚本呢?因为需要保证整个操作是原子性执行的。

// redis位数组type redisBitSet struct {    store *redis.Client    key   string    bits  uint}// 检查偏移量offset数组是否全部为1// 是:元素可能存在// 否:元素一定不存在func (r *redisBitSet) check(offsets []uint) (bool, error) {    args, err := r.buildOffsetArgs(offsets)    if err != nil {        return false, err    }    // 执行脚本    resp, err := r.store.Eval(testScript, []string{r.key}, args)    // 这里需要注意一下,底层使用的go-redis    // redis.Nil表示key不存在的情况需特殊判断    if err == redis.Nil {        return false, nil    } else if err != nil {        return false, err    }
    exists, ok := resp.(int64)    if !ok {        return false, nil    }
    return exists == 1, nil}
// 将k位点全部设置为1func (r *redisBitSet) set(offsets []uint) error {    args, err := r.buildOffsetArgs(offsets)    if err != nil {        return err    }    _, err = r.store.Eval(setScript, []string{r.key}, args)    // 底层使用的是go-redis,redis.Nil表示操作的key不存在    // 需要针对key不存在的情况特殊判断    if err == redis.Nil {        return nil    } else if err != nil {        return err    }    return nil}
// 构建偏移量offset字符串数组,因为go-redis执行lua脚本时参数定义为[]stringy// 因此需要转换一下func (r *redisBitSet) buildOffsetArgs(offsets []uint) ([]string, error) {    var args []string    for _, offset := range offsets {        if offset >= r.bits {            return nil, ErrTooLargeOffset        }        args = append(args, strconv.FormatUint(uint64(offset), 10))    }    return args, nil}
// 删除func (r *redisBitSet) del() error {    _, err := r.store.Del(r.key)    return err}
// 自动过期func (r *redisBitSet) expire(seconds int) error {    return r.store.Expire(r.key, seconds)}
func newRedisBitSet(store *redis.Client, key string, bits uint) *redisBitSet {    return &redisBitSet{        store: store,        key:   key,        bits:  bits,    }}
复制代码

到这里位数组操作就全部实现了,接下来看下如何通过 k 个散列函数计算出 k 个位点

k 次散列计算出 k 个位点

// k次散列计算出k个offsetfunc (f *Filter) getLocations(data []byte) []uint {    // 创建指定容量的切片    locations := make([]uint, maps)    // maps表示k值,作者定义为了常量:14    for i := uint(0); i < maps; i++ {        // 哈希计算,使用的是"MurmurHash3"算法,并每次追加一个固定的i字节进行计算        hashValue := hash.Hash(append(data, byte(i)))        // 取下标offset        locations[i] = uint(hashValue % uint64(f.bits))    }      return locations}
复制代码

插入与查询

添加与查询实现就非常简单了,组合一下上面的函数就行。

// 添加元素func (f *Filter) Add(data []byte) error {    locations := f.getLocations(data)    return f.bitSet.set(locations)}
// 检查是否存在func (f *Filter) Exists(data []byte) (bool, error) {    locations := f.getLocations(data)    isSet, err := f.bitSet.check(locations)    if err != nil {        return false, err    }    if !isSet {        return false, nil    }
    return true, nil}
复制代码

改进建议

整体实现非常简洁高效,那么有没有改进的空间呢?

个人认为还是有的,上面提到过自动计算最优 m 与 k 的数学公式,如果创建参数改为:

预期总数量expectedInsertions

期望误差falseProbability

就更好了,虽然作者注释里特别提到了误差说明,但是实际上作为很多开发者对位数组长度并不敏感,无法直观知道 bits 传多少预期误差会是多少。

// New create a Filter, store is the backed redis, key is the key for the bloom filter,// bits is how many bits will be used, maps is how many hashes for each addition.// best practices:// elements - means how many actual elements// when maps = 14, formula: 0.7*(bits/maps), bits = 20*elements, the error rate is 0.000067 < 1e-4// for detailed error rate table, see http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.htmlfunc New(store *redis.Redis, key string, bits uint) *Filter {    return &Filter{        bits:   bits,        bitSet: newRedisBitSet(store, key, bits),    }}
// expectedInsertions - 预期总数量// falseProbability - 预期误差// 这里也可以改为option模式不会破坏原有的兼容性func NewFilter(store *redis.Redis, key string, expectedInsertions uint, falseProbability float64) *Filter {    bits := optimalNumOfBits(expectedInsertions, falseProbability)    k := optimalNumOfHashFunctions(bits, expectedInsertions)    return &Filter{        bits:   bits,        bitSet: newRedisBitSet(store, key, bits),        k:      k,    }}
// 计算最优哈希次数func optimalNumOfHashFunctions(m, n uint) uint {    return uint(math.Round(float64(m) / float64(n) * math.Log(2)))}
// 计算最优数组长度func optimalNumOfBits(n uint, p float64) uint {    return uint(float64(-n) * math.Log(p) / (math.Log(2) * math.Log(2)))}
复制代码

回到问题

如何预防非法 id 导致缓存穿透?

由于 id 不存在导致请求无法命中缓存流量直接打到数据库,同时数据库也不存在该记录导致无法写入缓存,高并发场景这无疑会极大增加数据库压力。解决方案有两种:

  1. 采用布隆过滤器

数据写入数据库时需同步写入布隆过滤器,同时如果存在脏数据场景(比如:删除)则需要定时重建布隆过滤器,使用 redis 作为存储时不可以直接删除 bloom.key,可以采用 rename key 的方式更新 bloom

  1. 缓存与数据库同时无法命中时向缓存写入一个过期时间较短的空值。

资料

布隆过滤器(Bloom Filter)原理及 Guava 中的具体实现

布隆过滤器-维基百科

Redis.setbit

项目地址

https://github.com/zeromicro/go-zero

欢迎使用 go-zerostar 支持我们!

发布于: 4 小时前阅读数: 12
用户头像

保持简单 2017.10.24 加入

go-zero作者

评论

发布
暂无评论
详解布隆过滤器的原理和实现