#include "sht21.h"
struct { sint16 value; uint16 raw; uint8 crc;} aTemperature, aHumidity;
esp_err_t i2c_master_init(void){ int i2c_master_port = I2C_MASTER_NUM; i2c_config_t conf = { .mode = I2C_MODE_MASTER, .sda_io_num = I2C_MASTER_SDA_IO, .sda_pullup_en = GPIO_PULLUP_ENABLE, .scl_io_num = I2C_MASTER_SCL_IO, .scl_pullup_en = GPIO_PULLUP_ENABLE, .master.clk_speed = I2C_MASTER_FREQ_HZ, // .clk_flags = 0, /*!< Optional, you can use I2C_SCLK_SRC_FLAG_* flags to choose i2c source clock here. */ }; esp_err_t err = i2c_param_config(i2c_master_port, &conf); if (err != ESP_OK) { return err; } return i2c_driver_install(i2c_master_port, conf.mode, I2C_MASTER_RX_BUF_DISABLE, I2C_MASTER_TX_BUF_DISABLE, 0);}
// fT = 175.72*u16T/65536.0 - 46.85;// fRH = 125.0*u16RH/65536.0 - 6.0;
// -------------------------------------------------------------------sint16 sht21_calcRH(uint16 u16RH){ sint16 humidityRH; // variable for result
u16RH &= ~0x0003; // clear bits [1..0] (status bits) //-- calculate relative humidity [%RH] --
humidityRH = (sint16)(-600 + (12500*(sint32)u16RH)/65536 ); // RH = -6 + 125 * SRH/2^16 return humidityRH; // Return RH*100}
// -------------------------------------------------------------------sint16 sht21_calcTemperature(uint16 u16T){ sint16 temperature; // variable for result
u16T &= ~0x0003; // clear bits [1..0] (status bits)
//-- calculate temperature [癈] -- temperature= (sint16)(-4685 + (17572*(sint32)u16T)/65536); //T = -46.85 + 175.72 * ST/2^16 return temperature; //return T*100}
// i2c_cmd_handle_t cmd = i2c_cmd_link_create();// i2c_master_start(cmd);// i2c_master_write_byte(cmd, BH1750_SENSOR_ADDR << 1 | WRITE_BIT, ACK_CHECK_EN);// i2c_master_write_byte(cmd, BH1750_CMD_START, ACK_CHECK_EN);// i2c_master_stop(cmd);// ret = i2c_master_cmd_begin(i2c_num, cmd, 1000 / portTICK_RATE_MS);// i2c_cmd_link_delete(cmd);// if (ret != ESP_OK) {// return ret;// }// vTaskDelay(30 / portTICK_RATE_MS);// cmd = i2c_cmd_link_create();// i2c_master_start(cmd);// i2c_master_write_byte(cmd, BH1750_SENSOR_ADDR << 1 | READ_BIT, ACK_CHECK_EN);// i2c_master_read_byte(cmd, data_h, ACK_VAL);// i2c_master_read_byte(cmd, data_l, NACK_VAL);// i2c_master_stop(cmd);// ret = i2c_master_cmd_begin(i2c_num, cmd, 1000 / portTICK_RATE_MS);// i2c_cmd_link_delete(cmd);
esp_err_t SHT2X_THMeasure(i2c_port_t i2c_num){ // uint8 u8Ack; int ret; uint8 t_value[3]; uint8 h_value[3];
#if (SHT2X_RESOLUTION != 0x00) // only needed if used resolution other than default // i2c_start(); // send start sequence (S) // u8Ack = i2c_write((SHT2X_SLAVEADDRESS<<1)|I2C_WRITE); // write to slave 0x40 // u8Ack = (u8Ack<<1)|i2c_write(SHT2X_CMD_RD_REG); // request to read from user register // i2c_start(); // send start sequence (S) // u8Ack = (u8Ack<<1)|i2c_write((SHT2X_SLAVEADDRESS<<1)|I2C_READ); // read from slave 0x40 // u8UserReg = i2c_read(I2C_NACK); // read user register // i2c_start(); // send start sequence (S) // u8Ack = i2c_write((SHT2X_SLAVEADDRESS<<1)|I2C_WRITE); // write to slave 0x40 // u8Ack = (u8Ack<<1)|i2c_write(SHT2X_CMD_WR_REG); // request to write user register // u8Ack = (u8Ack<<1)|i2c_write(SHT2X_RESOLUTION | (u8UserReg & ~0x81)); // write new user register data i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, SHT2X_SLAVEADDRESS<<1 | WRITE_BIT, ACK_CHECK_EN); i2c_master_write_byte(cmd, SHT2X_CMD_WR_REG, ACK_CHECK_EN); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(i2c_num, cmd, 500 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) { return ret; }#endif//(SHT2X_RESOLUTION != 0x00) // -------------------- // measure temperature // -------------------- // i2c_start(); // send start sequence (S) // u8Ack = i2c_write((SHT2X_SLAVEADDRESS<<1)|I2C_WRITE);//----IIC???(8?)???7??IIC????0x80(???HT2X_SLAVEADDRESS=0x40)???DATA???(?R:1 ,?WRITE?0) //a write to slave 0x40 // u8Ack = (u8Ack<<1)|i2c_write(SHT2X_CMD_MEAS_T); //----SHT2X_CMD_MEAS_T=0xF3(??????,???)//request to measure temperature // i2c_stop();
i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, SHT2X_SLAVEADDRESS<<1 | WRITE_BIT, ACK_CHECK_EN); i2c_master_write_byte(cmd, SHT2X_CMD_MEAS_T, ACK_CHECK_EN); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(i2c_num, cmd, 500 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) { return ret; }
vTaskDelay(SHT2X_TEMP_MEAS_TIME / portTICK_RATE_MS);
// shortTermSleep(SHT2X_TEMP_MEAS_TIME); // HAL_Delay(SHT2X_TEMP_MEAS_TIME); // time_wait(SHT2X_TEMP_MEAS_TIME); // i2c_start(); // send start sequence (SR) // u8Ack = i2c_write((SHT2X_SLAVEADDRESS<<1)|I2C_READ); //----IIC???(8?)???7??IIC????0x80(???HT2X_SLAVEADDRESS=0x40)???DATA???(?R:1 ,?WRITE?0) // a read from slave 0x40 cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, SHT2X_SLAVEADDRESS << 1 | READ_BIT, ACK_CHECK_EN); i2c_master_read_byte(cmd, &t_value[0], ACK_VAL); i2c_master_read_byte(cmd, &t_value[1], ACK_VAL); i2c_master_read_byte(cmd, &t_value[2], NACK_VAL); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(i2c_num, cmd, 500 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd);
// if(u8Ack==I2C_ACK) { // aTemperature.raw = i2c_read(I2C_ACK)<<8; // read hi byte // aTemperature.raw |= i2c_read(I2C_ACK); // read lo byte // aTemperature.crc = i2c_read(I2C_NACK); // read check sum and finish transfere // }else { // aTemperature.raw = 0; // } // i2c_stop(); aTemperature.raw = t_value[0]<<8; aTemperature.raw |= t_value[1]; aTemperature.crc = t_value[2];
// -------------------------// Humidity Measure // ------------------------- // i2c_start(); // send start sequence (S) // u8Ack = i2c_write((SHT2X_SLAVEADDRESS<<1)|I2C_WRITE); // a write to slave 0x40 1000 0000 // u8Ack = (u8Ack<<1)|i2c_write(SHT2X_CMD_MEAS_RH); // request to measure humidity F5 1110 0101 // i2c_stop(); cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, SHT2X_SLAVEADDRESS<<1 | WRITE_BIT, ACK_CHECK_EN); i2c_master_write_byte(cmd, SHT2X_CMD_MEAS_RH, ACK_CHECK_EN); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(i2c_num, cmd, 500 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); if (ret != ESP_OK) { return ret; } // shortTermSleep(SHT2X_HUMI_MEAS_TIME); // HAL_Delay(SHT2X_HUMI_MEAS_TIME); vTaskDelay(SHT2X_HUMI_MEAS_TIME / portTICK_RATE_MS);
// i2c_start(); // send start sequence (SR) // u8Ack = i2c_write((SHT2X_SLAVEADDRESS<<1)|I2C_READ); // read from slave 0x40 1000 0001
cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, SHT2X_SLAVEADDRESS << 1 | READ_BIT, ACK_CHECK_EN); i2c_master_read_byte(cmd, &h_value[0], ACK_VAL); i2c_master_read_byte(cmd, &h_value[1], ACK_VAL); i2c_master_read_byte(cmd, &h_value[2], NACK_VAL); i2c_master_stop(cmd); ret = i2c_master_cmd_begin(i2c_num, cmd, 500 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd);
// if(u8Ack==I2C_ACK) { // timeout // aHumidity.raw = i2c_read(I2C_ACK)<<8; // read hi byte // aHumidity.raw |= i2c_read(I2C_ACK); // read lo byte // aHumidity.crc = i2c_read(I2C_NACK); // read check sum and finish transfere // }else{ // aHumidity.raw = 0; // } // i2c_stop(); // PowerOff(); aHumidity.raw = h_value[0] <<8; // read hi byte aHumidity.raw |= h_value[1]; // read lo byte aHumidity.crc = h_value[2]; // read check sum and finish transfere
aTemperature.value = sht21_calcTemperature(aTemperature.raw); aHumidity.value = sht21_calcRH(aHumidity.raw); // signed value, temperature = aTemperature.value * 0.01? if(aTemperature.crc!= sht21_CRC((uint8*)&aTemperature.raw, 2)) {} if(aHumidity.crc!= sht21_CRC((uint8*)&aHumidity.raw, 2)) {} if(aTemperature.value>5100) aTemperature.value=5100; //prevent temperature over-/underflow else if(aTemperature.value<0) aTemperature.value=0; if(aHumidity.value>10000) aTemperature.value=10000; //prevent temperature over-/underflow else if(aTemperature.value<0) aTemperature.value=0;
return ret;}
uint16_t getTemperature() { return aTemperature.value;}
uint16_t getHumidity() { return aHumidity.value;}
//==============================================================================uint8 sht21_CRC(uint8 value[], uint8 u8Bytes) {// CRC const uint16 POLYNOMIAL = 0x131; //P(x)=x^8+x^5+x^4+1 = 100110001 uint8 crc = 0; uint8 byteCtr; uint8 bitCtr;
//calculates 8-Bit checksum with given polynomial for (byteCtr = 0; byteCtr < u8Bytes; ++byteCtr) { crc ^= (value[byteCtr]); for (bitCtr = 8; bitCtr > 0; --bitCtr) { if (crc & 0x80) crc = (crc << 1) ^ POLYNOMIAL; else crc = (crc << 1); } } return crc;}
评论