写点什么

一文详解常见医学自然语言理解任务和算法

作者:阿里云天池
  • 2024-03-27
    浙江
  • 本文字数:2173 字

    阅读完需:约 7 分钟


1. 引言

随着人工智能(AI)技术的不断发展,越来越多的研究者开始关注 AI 技术在医学健康领域的研究应用,其中加速 AI 技术产业落地的一个重要环节就是标准数据集和科学评估体系的建立。由中国中文信息学会医疗健康与生物信息处理专业委员发起的中文医疗信息处理挑战榜 CBLUE[1]于今年 4 月份上线,该 benchmark 覆盖了 8 种经典的医学自然语言理解任务,是业界首个公开的中文医疗信息领域的公开评测基准,上线后受到了广泛关注,目前已经吸引了 100 多支队伍参与打榜。 近日,CBLUE 工作组公开了论文[2]并开源了评测基准 baseline[3],希望对中文医疗 AI 社区的技术发展起到促进作用。本文对常见的医学自然语言理解任务以及模型方法做一个全面介绍。

2.任务介绍

CBLUE 的全称是 Chinese Biomedical Language Understanding Evaluation Benchmark,包括医学文本信息抽取、医学术语标准化、医学文本分类和医学问答 4 大类常见的医学自然语言处理任务。CBLUE 为研究者们提供真实场景数据的同时,也为多个任务提供了统一的测评方式,目的是促进研究者们关注 AI 模型的泛化能力。


下面是各个子任务的简单介绍:

(1) 医学信息抽取:

CMeEE(Chinese Medical Entity Extraction dataset):医学实体识别任务, 识别出医学文本中的关键术语,如“疾病”、“药品”、“检查检验”等。任务聚焦于儿科类常见疾病,数据来源于权威的医学教科书和专家指南。CMeIE(Chinese Medical Information Extraction dataset):医学关系抽取任务,用于判定医学文本中两个实体之间的关系,如“类风湿性关节炎”与“关节压痛计数” 之间存在“疾病-检查”的关系,数据源同 CMeEE。实体识别和关系抽取是医学自然语言处理中非常基础的技术,可应用于电子病历结构化、医学知识图谱建设等。

(2)医学术语归一化:

CHIP-CDN(CHIP - Clinical Diagnosis Normalization dataset):医学临床术语标准化任务。 临床上,关于同一种诊断、手术、药品、检查、症状等往往会有成百上千种不同的写法(如:“Ⅱ型糖尿病”、“糖尿病(2 型)”和“2 型糖尿病”均表示同一个概念), 标准化要解决的问题就是为临床上各种不同的写法找到对应的标准说法(如“ICD 编码”)。在真实应用中,术语标准化技术在医保结算、DRGs(诊断自动分组)产品中发挥着重要作用。数据集来源于真实的医生书写的“诊断”条目,不涉及患者隐私。

(3)医学文本分类:

CHIP-CTC(CHIP - Clinical Trial Criterion dataset):临床试验筛选标准分类任务。临床试验是指通过人体志愿者也称为受试者进行的科学研究,目的是确定一种药物或一项治疗方法的疗效、安全性以及存在的副作用,对促进医学发展和提高人类健康都起着关键的作用。筛选标准是临床试验负责人拟定的鉴定受试者是否满足某项临床试验的主要指标(如“年龄”),临床试验的受试者招募一般是通过人工比较病历记录表和临床试验筛选标准完成,这种方式费时费力且效率低下。本数据集建设的目的就是为了促进使用 AI 技术来自动做临床试验筛选分类,提升科研效率。数据集来源于公开的中文临床试验注册网站,均有真实临床试验构成。KUAKE-QIC(KUAKE - Query Intention Classification dataset),医疗搜索用户查询意图识别任务,目标是为了提高搜索结果相关度。如用户查询“糖尿病该做什么检查?”的意图是想搜索相关的“治疗方案”。数据来源于搜索引擎的用户检索词条。

(4)医学检索和问答:

CHIP-STS(CHIP - Semantic Textual Similarity dataset):医学句子语义匹配任务。给定来自不同病种的问句对,判定两个句子语义是否相近,如“糖尿病吃什么?”和“糖尿病的食谱?”是语义相关的;“乙肝小三阳的危害”和“乙肝大三阳的危害”是语义不相关的。数据来源于脱敏过的互联网在线问诊数据。KUAKE-QTR(KUAKE – Query/Title Relevance dataset):医学搜索“检索词-页面标题”相关度匹配任务,用于判定搜索引擎场景中用户检索词与返回页面的标题之间的相关度,目标是提升搜索结果的相关度。KUAKE-QQR(KUAKE – Query/Query Relevance dataset):医学搜索“检索词-检索词”相关度匹配任务,同 QTR 任务,用于判定两个检索词之间的语义相关度,目标是提升搜索场景中经典的用户检索长尾词的召回率。

3.任务特点

CBLUE 工作组对评测基准包含的 8 个任务做了特点总结:

数据匿名且保护隐私: 生物医学数据通常包含敏感信息,因此对这些数据的利用可能侵犯个人隐私。对此,我们在发布基准之前对数据进行不影响数据有效性的匿名化,并逐一进行了人工检查。

任务数据来源丰富: 如“医学信息抽取”大类的任务来源于医学教科书和专家权威指南;“医学文本分类”任务来源于真实开放的临床试验数据;“医学问答”类任务来源于搜索引擎或者互联网在线问诊语料。这些丰富的场景和数据多样性为科研人员提供了研究 AI 算法最重要的宝矿,同时也对 AI 算法模型的通用性提出了更高的挑战。

任务分布真实: CBLUE 榜单中的所有数据都来自现实世界,数据真实且有噪音,因此对模型的鲁棒性提出了更高的要求。以“医学信息抽取”大类任务为例:数据集遵循长尾分布,如图(a)所示;此外,一些数据集(如 CMeIE)具有粗粒度和细粒度关系标签的层次结构,这是符合医学常识逻辑和人类认知的,如图(b)所示。真实世界数据分布为 AI 模型的泛化能力和拓展性提出了更高的要求。



查看本文全部内容,欢迎访问天池技术圈官方地址:一文详解常见医学自然语言理解任务和算法

用户头像

还未添加个人签名 2024-03-12 加入

还未添加个人简介

评论

发布
暂无评论
一文详解常见医学自然语言理解任务和算法_阿里云_阿里云天池_InfoQ写作社区