机器学习基石第一节 学习笔记

前言:
之前学习时候的笔记,虽然目前没有从事这方面的工作,不过还是希望备份一下,以后备查
正文:
What is machine learning
- define 
observation -》learning -》 skill
data -》ML -》 skill
skill = improve some performance measure
ML = improve some performance measure with experience computed from data
eg. stock data -》 ML -》 more investment gain
data -》ML -》 improve performance measure
- some use scenarios 
when human cannot program the system manually
when human cannot ‘define the solution‘ easily
when needing rapid decisions that humans cannot do
when needing to be user-oriented in a massive scale
- Key Essence of Machine Learning 
exists some ’underlying(mean潜在的) pattern‘ to be learned、
but no programmable(easy)definition
somehow there is data about the pattern
- application of machine learning 
Twitter 分析餐馆好不好
推荐电影 需要知晓用户对于一些电影的评价
- components problem 
f: x -> y, x,y 为data的输入和输出,而机器学习是在模拟f,从数据集D(x,y),通过演算法A,算出一个假说g(hypothesis)
{(xn,yn)} from f -> ML -> g
D(training examples) -> A(learning program) -> g 约等于 f (final hypothesis)
假说的集合 H (hypothesis set),g 属于 H
learning model = A and H
D —A on H—>(g:x->y)
- Machine Learning and Data Mining 
机器学习和数据挖掘是密不可分的
机器学习是实现人工智能的一种方式
统计是实现机器学习的一种方法
provable 可证明的 assumptions 假设,假定












 
    
评论