【杂谈】网络协议(二)
前言
文本已收录至我的 GitHub 仓库,欢迎 Star:https://github.com/bin392328206/six-finger
每篇一句
星辰陨落只为铸就挥剑一瞬,日月无光只因执剑者的刹那回眸。
絮叨
今天我们继续加油呀。
网络为什么要分层?
这里我们先探讨第一个问题,网络为什么要分层?因为,是个复杂的程序都要分层。
理解计算机网络中的概念,一个很好的角度是,想象网络包就是一段 Buffer,或者一块内存,是有格式的。同时,想象自己是一个处理网络包的程序,而且这个程序可以跑在电脑上,可以跑在服务器上,可以跑在交换机上,也可以跑在路由器上。你想象自己有很多的网口,从某个口拿进一个网络包来,用自己的程序处理一下,再从另一个网口发送出去。当然网络包的格式很复杂,这个程序也很复杂。复杂的程序都要分层,这是程序设计的要求。比如,复杂的电商还会分数据库层、缓存层、Compose 层、Controller 层和接入层,每一层专注做本层的事情。
程序是如何工作的?
我们可以简单地想象“你”这个程序的工作过程
通过上图,我们再来看一下原来困惑的问题。
首先是分层的比喻。所有不能表示出层层封装含义的比喻,都是不恰当的。总经理握手,不需要员工在吧,总经理之间谈什么,不需要员工参与吧,但是网络世界不是这样的。正确的应该是,总经理之间沟通的时候,经理将总经理放在自己兜里,然后组长把经理放自己兜里,员工把组长放自己兜里,像套娃娃一样。那员工直接沟通,不带上总经理,就不恰当了。
现实生活中,往往是员工说一句,组长补充两句,然后经理补充两句,最后总经理再补充两句。但是在网络世界,应该是总经理说话,经理补充两句,组长补充两句,员工再补充两句。
那 TCP 在三次握手的时候,IP 层和 MAC 层在做什么呢?当然是 TCP 发送每一个消息,都会带着 IP 层和 MAC 层了。因为,TCP 每发送一个消息,IP 层和 MAC 层的所有机制都要运行一遍。而你只看到 TCP 三次握手了,其实,IP 层和 MAC 层为此也忙活好久了。
这里要记住一点:只要是在网络上跑的包,都是完整的。可以有下层没上层,绝对不可能有上层没下层。
所以,对 TCP 协议来说,三次握手也好,重试也好,只要想发出去包,就要有 IP 层和 MAC 层,不然是发不出去的。
经常有人会问这样一个问题,我都知道那台机器的 IP 地址了,直接发给他消息呗,要 MAC 地址干啥?这里的关键就是,没有 MAC 地址消息是发不出去的
所以如果一个 HTTP 协议的包跑在网络上,它一定是完整的。无论这个包经过哪些设备,它都是完整的。
所谓的二层设备、三层设备,都是这些设备上跑的程序不同而已。一个 HTTP 协议的包经过一个二层设备,二层设备收进去的是整个网络包。这里面 HTTP、TCP、 IP、 MAC 都有。什么叫二层设备呀,就是只把 MAC 头摘下来,看看到底是丢弃、转发,还是自己留着。那什么叫三层设备呢?就是把 MAC 头摘下来之后,再把 IP 头摘下来,看看到底是丢弃、转发,还是自己留着。
理解网络协议的工作模式,有两个小窍门:
始终想象自己是一个处理网络包的程序:如何拿到网络包,如何根据规则进行处理,如何发出去;
始终牢记一个原则:只要是在网络上跑的包,都是完整的。可以有下层没上层,绝对不可能有上层没下层。
IP
即便没有专业学过计算机的人,只要倒腾过电脑,重装过系统,大多也会知道这个问题的答案:在 Windows 上是 ipconfig,在 Linux 上是 ifconfig。那你知道在 Linux 上还有什么其他命令可以查看 IP 地址吗?答案是 ip addr。如果回答不上来这个问题,那你可能没怎么用过 Linux
我们来运行一下 ip addr
这个命令显示了这台机器上所有的网卡。大部分的网卡都会有一个 IP 地址,当然,这不是必须的。在后面的分享中,我们会遇到没有 IP 地址的情况。
IP 地址是一个网卡在网络世界的通讯地址,相当于我们现实世界的门牌号码。既然是门牌号码,不能大家都一样,不然就会起冲突。比方说,假如大家都叫六单元 1001 号,那快递就找不到地方了。所以,有时候咱们的电脑弹出网络地址冲突,出现上不去网的情况,多半是 IP 地址冲突了。
MAC 地址
在 IP 地址的上一行是 link/ether fa:16:3e:c7:79:75 brd ff:ff:ff:ff:ff:ff,这个被称为 MAC 地址,是一个网卡的物理地址,用十六进制,6 个 byte 表示。
MAC 地址是一个很容易让人“误解”的地址。因为 MAC 地址号称全局唯一,不会有两个网卡有相同的 MAC 地址,而且网卡自生产出来,就带着这个地址。很多人看到这里就会想,既然这样,整个互联网的通信,全部用 MAC 地址好了,只要知道了对方的 MAC 地址,就可以把信息传过去。
这样当然是不行的。一个网络包要从一个地方传到另一个地方,除了要有确定的地址,还需要有定位功能。而有门牌号码属性的 IP 地址,才是有远程定位功能的。
例如,你去杭州市网商路 599 号 B 楼 6 层找刘超,你在路上问路,可能被问的人不知道 B 楼是哪个,但是可以给你指网商路怎么去。但是如果你问一个人,你知道这个身份证号的人在哪里吗?可想而知,没有人知道。
MAC 地址更像是身份证,是一个唯一的标识。它的唯一性设计是为了组网的时候,不同的网卡放在一个网络里面的时候,可以不用担心冲突。从硬件角度,保证不同的网卡有不同的标识
MAC 地址是有一定定位功能的,只不过范围非常有限。你可以根据 IP 地址,找到杭州市网商路 599 号 B 楼 6 层,但是依然找不到我,你就可以靠吼了,大声喊身份证 XXXX 的是哪位?我听到了,我就会站起来说,是我啊。但是如果你在上海,到处喊身份证 XXXX 的是哪位,我不在现场,当然不会回答,因为我在杭州不在上海
所以,MAC 地址的通信范围比较小,局限在一个子网里面。例如,从 192.168.0.2/24 访问 192.168.0.3/24 是可以用 MAC 地址的。一旦跨子网,即从 192.168.0.2/24 到 192.168.1.2/24,MAC 地址就不行了,需要 IP 地址起作用了。
IP 是地址,有定位功能;MAC 是身份证,无定位功能;
动态主机配置协议(DHCP)
大家想下,我们怎么的 Ip 是怎么来的
使用 net-tools:
你可能会问了,自己配置这个自由度太大了吧,我是不是配置什么都可以?如果配置一个和谁都不搭边的地址呢?例如,旁边的机器都是 192.168.1.x,我非得配置一个 16.158.23.6,会出现什么现象呢?不会出现任何现象,就是包发不出去呗。为什么发不出去呢?我来举例说明。
192.168.1.6 就在你这台机器的旁边,甚至是在同一个交换机上,而你把机器的地址设为了 16.158.23.6。在这台机器上,你企图去 ping192.168.1.6,你觉得只要将包发出去,同一个交换机的另一台机器马上就能收到,对不对?可是 Linux 系统不是这样的,它没你想得那么智能。你用肉眼看到那台机器就在旁边,它则需要根据自己的逻辑进行处理。
还记得我们在第二节说过的原则吗?只要是在网络上跑的包,都是完整的,可以有下层没上层,绝对不可能有上层没下层。
所以,你看着它有自己的源 IP 地址 16.158.23.6,也有目标 IP 地址 192.168.1.6,但是包发不出去,这是因为 MAC 层还没填。
自己的 MAC 地址自己知道,这个容易。但是目标 MAC 填什么呢?是不是填 192.168.1.6 这台机器的 MAC 地址呢?
当然不是。Linux 首先会判断,要去的这个地址和我是一个网段的吗,或者和我的一个网卡是同一网段的吗?只有是一个网段的,它才会发送 ARP 请求,获取 MAC 地址。如果发现不是呢?
Linux 默认的逻辑是,如果这是一个跨网段的调用,它便不会直接将包发送到网络上,而是企图将包发送到网关。如果你配置了网关的话,Linux 会获取网关的 MAC 地址,然后将包发出去。对于 192.168.1.6 这台机器来讲,虽然路过它家门的这个包,目标 IP 是它,但是无奈 MAC 地址不是它的,所以它的网卡是不会把包收进去的。
如果将网关配置为 192.168.1.6 呢?不可能,Linux 不会让你配置成功的,因为网关要和当前的网络至少一个网卡是同一个网段的,怎么可能 16.158.23.6 的网关是 192.168.1.6 呢?
所以,当你需要手动配置一台机器的网络 IP 时,一定要好好问问你的网络管理员。如果在机房里面,要去网络管理员那里申请,让他给你分配一段正确的 IP 地址。当然,真正配置的时候,一定不是直接用命令配置的,而是放在一个配置文件里面。不同系统的配置文件格式不同,但是无非就是 CIDR、子网掩码、广播地址和网关地址。
原来配置 IP 有这么多门道儿啊。你可能会问了,配置了 IP 之后一般不能变的,配置一个服务端的机器还可以,但是如果是客户端的机器呢?我抱着一台笔记本电脑在公司里走来走去,或者白天来晚上走,每次使用都要配置 IP 地址,那可怎么办?还有人事、行政等非技术人员,如果公司所有的电脑都需要 IT 人员配置,肯定忙不过来啊。
IP 地址的收回和续租
既然是租房子,就是有租期的。租期到了,管理员就要将 IP 收回。如果不用的话,收回就收回了。就像你租房子一样,如果还要续租的话,不能到了时间再续租,而是要提前一段时间给房东说。DHCP 也是这样。客户机会在租期过去 50% 的时候,直接向为其提供 IP 地址的 DHCP Server 发送 DHCP request 消息包。客户机接收到该服务器回应的 DHCP ACK 消息包,会根据包中所提供的新的租期以及其他已经更新的 TCP/IP 参数,更新自己的配置。这样,IP 租用更新就完成了
ICMP 与 ping
ping 是基于 ICMP 协议工作的。ICMP 全称 Internet Control Message Protocol,就是互联网控制报文协议。这里面的关键词是“控制”,那具体是怎么控制的呢?
接下来,我们重点来看 ping 的发送和接收过程。
假定主机 A 的 IP 地址是 192.168.1.1,主机 B 的 IP 地址是 192.168.1.2,它们都在同一个子网。那当你在主机 A 上运行“ping 192.168.1.2”后,会发生什么呢?
ping 命令执行的时候,源主机首先会构建一个 ICMP 请求数据包,ICMP 数据包内包含多个字段。最重要的是两个,第一个是类型字段,对于请求数据包而言该字段为 8;另外一个是顺序号,主要用于区分连续 ping 的时候发出的多个数据包。每发出一个请求数据包,顺序号会自动加 1。为了能够计算往返时间 RTT,它会在报文的数据部分插入发送时间
然后,由 ICMP 协议将这个数据包连同地址 192.168.1.2 一起交给 IP 层。IP 层将以 192.168.1.2 作为目的地址,本机 IP 地址作为源地址,加上一些其他控制信息,构建一个 IP 数据包。
接下来,需要加入 MAC 头。如果在本节 ARP 映射表中查找出 IP 地址 192.168.1.2 所对应的 MAC 地址,则可以直接使用;如果没有,则需要发送 ARP 协议查询 MAC 地址,获得 MAC 地址后,由数据链路层构建一个数据帧,目的地址是 IP 层传过来的 MAC 地址,源地址则是本机的 MAC 地址;还要附加上一些控制信息,依据以太网的介质访问规则,将它们传送出去。
主机 B 收到这个数据帧后,先检查它的目的 MAC 地址,并和本机的 MAC 地址对比,如符合,则接收,否则就丢弃。接收后检查该数据帧,将 IP 数据包从帧中提取出来,交给本机的 IP 层。同样,IP 层检查后,将有用的信息提取后交给 ICMP 协议。
主机 B 会构建一个 ICMP 应答包,应答数据包的类型字段为 0,顺序号为接收到的请求数据包中的顺序号,然后再发送出去给主机 A
在规定的时候间内,源主机如果没有接到 ICMP 的应答包,则说明目标主机不可达;如果接收到了 ICMP 应答包,则说明目标主机可达。此时,源主机会检查,用当前时刻减去该数据包最初从源主机上发出的时刻,就是 ICMP 数据包的时间延迟
动态路由算法
使用动态路由路由器,可以根据路由协议算法生成动态路由表,随网络运行状况的变化而变化。那路由算法是什么样的呢?
我们可以想象唐僧西天取经,需要解决两大问题,一个是在每个国家如何找到正确的路,去换通关文牒、吃饭、休息;一个是在国家之间,野外行走的时候,如何找到正确的路、水源的问题。
无论是一个国家内部,还是国家之间,我们都可以将复杂的路径,抽象为一种叫作图的数据结构。至于唐僧西行取经,肯定想走得路越少越好,道路越短越好,因而这就转化成为如何在途中找到最短路径的问题。咱们在大学里面学习计算机网络与数据结构的时候,知道求最短路径常用的有两种方法,一种是 Bellman-Ford 算法,一种是 Dijkstra 算法。在计算机网络中基本也是用这两种方法计算的。
距离矢量路由算法
第一大类的算法称为距离矢量路由(distance vector routing)。它是基于 Bellman-Ford 算法的。这种算法的基本思路是,每个路由器都保存一个路由表,包含多行,每行对应网络中的一个路由器,每一行包含两部分信息,一个是要到目标路由器,从那条线出去,另一个是到目标路由器的距离。
由此可以看出,每个路由器都是知道全局信息的。那这个信息如何更新呢?每个路由器都知道自己和邻居之间的距离,每过几秒,每个路由器都将自己所知的到达所有的路由器的距离告知邻居,每个路由器也能从邻居那里得到相似的信息。
每个路由器根据新收集的信息,计算和其他路由器的距离,比如自己的一个邻居距离目标路由器的距离是 M,而自己距离邻居是 x,则自己距离目标路由器是 x+M。
链路状态路由算法
第二大类算法是链路状态路由(link state routing),基于 Dijkstra 算法。这种算法的基本思路是:当一个路由器启动的时候,首先是发现邻居,向邻居 say hello,邻居都回复。然后计算和邻居的距离,发送一个 echo,要求马上返回,除以二就是距离。然后将自己和邻居之间的链路状态包广播出去,发送到整个网络的每个路由器。这样每个路由器都能够收到它和邻居之间的关系的信息。因而,每个路由器都能在自己本地构建一个完整的图,然后针对这个图使用 Dijkstra 算法,找到两点之间的最短路径。
不像距离距离矢量路由协议那样,更新时发送整个路由表。链路状态路由协议只广播更新的或改变的网络拓扑,这使得更新信息更小,节省了带宽和 CPU 利用率。而且一旦一个路由器挂了,它的邻居都会广播这个消息,可以使得坏消息迅速收敛。
动态路由协议
OSPF(Open Shortest Path First,开放式最短路径优先)就是这样一个基于链路状态路由协议,广泛应用在数据中心中的协议。由于主要用在数据中心内部,用于路由决策,因而称为内部网关协议(Interior Gateway Protocol,简称 IGP)。
内部网关协议的重点就是找到最短的路径。在一个组织内部,路径最短往往最优。当然有时候 OSPF 可以发现多个最短的路径,可以在这多个路径中进行负载均衡,这常常被称为等价路由。
这一点非常重要。有了等价路由,到一个地方去可以有相同的两个路线,可以分摊流量,还可以当一条路不通的时候,走另外一条路。这个在后面我们讲数据中心的网络的时候,一般应用的接入层会有负载均衡 LVS。它可以和 OSPF 一起,实现高吞吐量的接入层设计。
有了内网的路由协议,在一个国家内,唐僧可以想怎么走怎么走了,两条路选一条也行。
版权声明: 本文为 InfoQ 作者【自然】的原创文章。
原文链接:【http://xie.infoq.cn/article/675fdd3e6f0c868a8aeeed800】。文章转载请联系作者。
评论