介绍
本篇 Codelab 基于网络模块以及 Webview 实现一次 HTTPS 请求,并对其过程进行抓包分析。效果如图所示:
相关概念
● Webview:提供 Web 控制能力,Web 组件提供网页显示能力。
● HTTP数据请求:网络管理模块,提供 HTTP 数据请求能力,支持 GET、POST、OPTIONS、HEAD、PUT、DELETE、TRACE、CONNECT 请求方法。
● HTTPS:应用层协议,支持加密传输以及身份认证,保证数据的安全传输。
● SSL:SSL(Secure Socket Layer)安全套接层是位于传输通信协议(TCP/IP)之上实现的一种安全协议。
● TLS:TLS(Transport Layer Security)是一种安全协议,旨在实现数据加密传输。
完整示例
gitee源码地址
源码下载
HTTPS请求过程(ArkTS).zip
环境搭建
我们首先需要完成 HarmonyOS 开发环境搭建,可参照如下步骤进行。
软件要求
● DevEco Studio版本:DevEco Studio 3.1 Release。
● HarmonyOS SDK版本:API version 9。
硬件要求
● 设备类型:华为手机或运行在 DevEco Studio 上的华为手机设备模拟器。
● HarmonyOS 系统:3.1.0 Developer Release。
环境搭建
1. 安装 DevEco Studio,详情请参考下载和安装软件。
2. 设置 DevEco Studio 开发环境,DevEco Studio 开发环境需要依赖于网络环境,需要连接上网络才能确保工具的正常使用,可以根据如下两种情况来配置开发环境:
● 如果可以直接访问 Internet,只需进行下载HarmonyOS SDK操作。
● 如果网络不能直接访问 Internet,需要通过代理服务器才可以访问,请参考配置开发环境。
3. 开发者可以参考以下链接,完成设备调试的相关配置:
● 使用真机进行调试
● 使用模拟器进行调试
代码结构解读
本篇 Codelab 只对核心代码进行讲解,对于完整代码,我们会在源码下载或 gitee 中提供。
├──entry/src/main/ets // 代码区
│ ├──common
│ │ ├──constants
│ │ │ ├──StyleConstants.ets // 样式常量类
│ │ │ └──CommonConstants.ets // 常量类
│ │ └──utils
│ │ ├──HttpUtil.ets // 网络请求方法
│ │ └──Logger.ets // 日志打印工具类
│ ├──entryability
│ │ └──EntryAbility.ts // 程序入口类
│ └──pages
│ └──WebPage.ets // 页面入口
└──entry/src/main/resources // 资源文件目录
复制代码
创建 HTTPS 请求
HTTPS 协议是位于应用层的一种安全传输协议,与 HTTP 最大的区别是服务端与客户端之间进行数据传输都会经过 TLS/SSL 加密。该示例请求HarmonyOS官网,并将请求得到的内容通过 Web 容器展示出来。效果如图所示:
首先在 HttpUtil.ets 中调用 createHttp 方法创建一个请求任务,再通过 request 方法发起网络请求。该方法支持三个参数:url、options 以及 callback 回调,其中 options 可以设置请求方法、请求头以及超时时间等。
// HttpUtil.ets
import http from '@ohos.net.http';
export default async function httpGet(url: string) {
if (!url) {
return undefined;
}
let request = http.createHttp();
let options = {
method: http.RequestMethod.GET,
header: { 'Content-Type': 'application/json' },
readTimeout: CommonConstant.READ_TIMEOUT,
connectTimeout: CommonConstant.CONNECT_TIMEOUT
} as http.HttpRequestOptions;
let result = await request.request(url, options);
return result;
}
复制代码
接着在入口页面中调用上述封装的 httpGet 方法请求指定网址,将请求得到的内容嵌入到 Web 组件中。
// WebPage.ets
import http from '@ohos.net.http';
...
@Entry
@Component
struct WebPage {
@State webVisibility: Visibility = Visibility.Hidden;
...
build() {
Column() {
...
}
}
async onRequest() {
if (this.webVisibility === Visibility.Hidden) {
this.webVisibility = Visibility.Visible;
try {
let result = await httpGet(this.webSrc);
if (result && result.responseCode === http.ResponseCode.OK) {
this.controller.clearHistory();
this.controller.loadUrl(this.webSrc);
}
} catch (error) {
promptAction.showToast({
message: $r('app.string.http_response_error')
})
}
} else {
this.webVisibility = Visibility.Hidden;
}
}
}
复制代码
分析模块源码可知,通过 request 方法建立请求后,模块底层首先会调用三方库libcurl中的 curl_easy_init 初始化一个简单会话。初始化完成后,接着调用 curl_easy_setopt 方法设置传输选项。其中 CURLOPT_URL 用于设置请求的 URL 地址,对应 request 中的 url 参数;CURLOPT_WRITEFUNCTION 可以设置一个回调,保存接收的数据;CURLOPT_HEADERDATA 支持设置回调,在回调中保存响应头数据。
// http_exec.cpp
bool HttpExec::RequestWithoutCache(RequestContext *context)
{
if (!staticVariable_.initialized) {
NETSTACK_LOGE("curl not init");
return false;
}
auto handle = curl_easy_init();
...
if (!SetOption(handle, context, context->GetCurlHeaderList())) {
NETSTACK_LOGE("set option failed");
return false;
}
...
return true;
}
...
bool HttpExec::SetOption(CURL *curl, RequestContext *context, struct curl_slist *requestHeader)
{
const std::string &method = context->options.GetMethod();
if (!MethodForGet(method) && !MethodForPost(method)) {
NETSTACK_LOGE("method %{public}s not supported", method.c_str());
return false;
}
if (context->options.GetMethod() == HttpConstant::HTTP_METHOD_HEAD) {
NETSTACK_CURL_EASY_SET_OPTION(curl, CURLOPT_NOBODY, 1L, context);
}
// 设置请求URL
NETSTACK_CURL_EASY_SET_OPTION(curl, CURLOPT_URL, context->options.GetUrl().c_str(), context);
...
// 设置CURLOPT_WRITEFUNCTION传输选项,OnWritingMemoryBody为回调函数
NETSTACK_CURL_EASY_SET_OPTION(curl, CURLOPT_WRITEFUNCTION, OnWritingMemoryBody, context);
NETSTACK_CURL_EASY_SET_OPTION(curl, CURLOPT_WRITEDATA, context, context);
// 在OnWritingMemoryHeader写入响应头数据
NETSTACK_CURL_EASY_SET_OPTION(curl, CURLOPT_HEADERFUNCTION, OnWritingMemoryHeader, context);
NETSTACK_CURL_EASY_SET_OPTION(curl, CURLOPT_HEADERDATA, context, context);
...
return true;
}
...
#define NETSTACK_CURL_EASY_SET_OPTION(handle, opt, data, asyncContext) \
do {
CURLcode result = curl_easy_setopt(handle, opt, data); \
if (result != CURLE_OK) { \
const char *err = curl_easy_strerror(result); \
NETSTACK_LOGE("Failed to set option: %{public}s, %{public}s %{public}d", #opt, err, result); \
(asyncContext)->SetErrorCode(result); \
return false; \
} \
复制代码
传输选项设置成功后,调用 curl_multi_perform 执行传输请求,并通过 curl_multi_info_read 查询处理句柄是否有消息返回,最后进入 HandleCurlData 方法处理返回数据。
// http_exec.cpp
void HttpExec::SendRequest()
{
...
do {
...
auto ret = curl_multi_perform(staticVariable_.curlMulti, &runningHandle);
...
} while (runningHandle > 0);
}
...
void HttpExec::ReadResponse()
{
CURLMsg *msg = nullptr; /* NOLINT */
do {
...
msg = curl_multi_info_read(staticVariable_.curlMulti, &leftMsg);
if (msg) {
if (msg->msg == CURLMSG_DONE) {
HandleCurlData(msg);
}
}
} while (msg);
}
复制代码
在 HandleCurlData 函数中调用 ParseHeaders 函数将上面回调写入的响应头解析出来,其中响应头中会携带客户端和服务端支持的最高网络协议,如果是 HTTP/2 表示支持 HTTPS 加密传输。
// http_exec.cpp
bool HttpExec::GetCurlDataFromHandle(CURL *handle, RequestContext *context, CURLMSG curlMsg, CURLcode result)
{
...
context->response.ParseHeaders();
return true;
}
// http_response.cpp
void HttpResponse::ParseHeaders()
{
std::vector<std::string> vec = CommonUtils::Split(rawHeader_, HttpConstant::HTTP_LINE_SEPARATOR);
for (const auto &header : vec) {
if (CommonUtils::Strip(header).empty()) {
continue;
}
auto index = header.find(HttpConstant::HTTP_HEADER_SEPARATOR);
if (index == std::string::npos) {
header_[CommonUtils::Strip(header)] = "";
NETSTACK_LOGI("HEAD: %{public}s", CommonUtils::Strip(header).c_str());
continue;
}
header_[CommonUtils::ToLower(CommonUtils::Strip(header.substr(0, index)))] =
CommonUtils::Strip(header.substr(index + 1));
}
}
复制代码
将本篇 Codelab 中的网址协议头更改为 http 时,在 DevEco Studio 的日志中看到服务端会返回 301 状态码永久重定向到 https,因此最终通信依旧会经历 TLS 加密传输。
模块源码可以在 Gitee 开源仓库 communication_netstack 中获取,本篇 Codelab 引用源码部分位于 http_exec 文件中。
TLS/SSL 握手过程
本章节主要通过抓包数据分析 TLS 协议的握手过程,其中包括交换参数、证书验证、密钥计算以及验证密钥等,抓包内容如图所示:
握手过程如图所示:
5.1 第一次握手
根据上图中可以看到,客户端首先会进行第一次握手连接,发送“Client Hello”消息给服务端开启一个新的会话连接。分析数据包得到,客户端在第一次握手时会向服务端传递协议版本号(TLS1.2)、随机数(Client Random,用于后续生成“会话密钥”)、Session ID 以及 Cipher Suites(客户端支持的密码套件)。数据内容如图所示:
5.2 第二次握手
服务端接收到客户端数据后,将响应数据通过“Sever Hello”传递给客户端,包括随机数(Sever Random,用于后续生成“会话密钥”)、协议版本号(TLS1.2)以及 Cipher Suite(任意选择一个客户端支持的密码套件),数据内容如图所示:
服务端传递“Sever Hello”后,紧跟着会将 Certificate(证书)、“Sever Key Exchange”消息以及“Server Hello Done”消息传递给客户端。此处着重分析“Sever Key Exchange”,数据内容如图所示:
5.3 第三次握手
客户端收到“Server Hello Done”消息后,会将 Client Params 数据传递给服务端,其中包含自身生成的椭圆曲线公钥(Pubkey),数据内容如图所示:
经过上述过程,客户端持有 Client Random、Server Random 以及 Server Params,将 Server Params 使用服务端公钥解密后得到“Server Key Exchange”消息中的临时公钥,客户端使用 x25519 算法计算出预主密钥(Premaster Secret),然后再结合客户端随机数、服务端随机数以及预主密钥生成主密钥,最终构建“会话密钥”。“Change Cipher Spec”消息表示客户端已经生成密钥,并切换到加密模式。最后将之前所有的握手数据做一个摘要,再利用双方协商好的对称密钥进行加密, 通过“Encrypted Handshake Message”消息将加密数据传递给服务端做校验。数据内容如图所示:
5.4 第四次握手
服务端利用 Client Random、Server Random 以及 Client Params 计算得出“会话密钥”,向客户端传递“Change Cipher Spec”和“Encrypted Handshake Message”消息供客户端校验。当双方校验通过后,真正的数据才开始传输。
总结
您已经完成了本次 Codelab 的学习,并了解到以下知识点:
1. 使用 @ohos.net.http 建立一次 https 请求。
2. 通过分析 TLS/SSL 握手过程中的传输数据包来理解数据安全传输。
评论