SpringCloud Gateway 路由转发性能优化

SpringCloud Gateway 系列文章共五篇,由我行开发工程师 @Aaron 提供,带大家深入剖析 Gateway 工作原理,及如何基于 Gateway 进行定制化开发以适应企业特定环境需求。
第二篇:SpringCloud Gateway 路由数量对性能的影响研究。
第三篇:SpringCloud Gateway 路由转发性能优化。
第四篇:SpringCloud Gateway 路由断言。
第五篇:SpringCloud Gateway 过滤器。
前面篇章,通过测试验证,发现随着路由增长,路由性能会严重下降。
本篇,针对采用 Path 方式路由的进行性能优化,注意该【优化】仅适用于特定场景,不具备普适性。
源码解读
RoutePredicateHandlerMapping类是 SpringCloud Gateway 接收 Web 请求,并查找匹配路由,具体方法为:
protected Mono<Route> lookupRoute(ServerWebExchange exchange) {...}对源码做简单修改,比如,Path 匹配 /mock/** 则对路由查找结果进行缓存(注意这里缓存策略和方式仅仅是举例,根据实际需求情况来做)
public static final String MOCK_PATCH = "/mock/**";private Map<String, Route> hashCache = new ConcurrentHashMap<>(1024);protected Mono<Route> lookupRoute(ServerWebExchange exchange) { String path = exchange.getRequest().getPath().subPath(0).value(); //符合Path规则,优先从缓存Map获取,时间复杂度近似于O(1) if (pathMatcher.match(MOCK_PATCH, path)) { return Mono.justOrEmpty(hashCache.get(path)) .switchIfEmpty(getRouteMono(exchange, path)); } return getRouteMono(exchange, path);}private Mono<Route> getRouteMono(ServerWebExchange exchange, String path) { return this.routeLocator.getRoutes() //... 略过 .map(route -> { if (logger.isDebugEnabled()) { logger.debug("Route matched: " + route.getId()); } validateRoute(route, exchange); //符合Path规则,缓存路由 if (pathMatcher.match(MOCK_PATCH, path)) { hashCache.put(path, route); } return route; });}继续查阅源码,找到RoutePredicateHandlerMapping 是如何装配的。在GatewayAutoConfiguration 中实现了 SpringCloud Gateway 内部组件的自动装配,RoutePredicateHandlerMapping 也在其中,代码入下:
@Beanpublic RoutePredicateHandlerMapping routePredicateHandlerMapping(FilteringWebHandler webHandler,RouteLocator routeLocator, GlobalCorsProperties globalCorsProperties, Environment environment) {return new RoutePredicateHandlerMapping(webHandler, routeLocator, globalCorsProperties, environment);}
很遗憾,官方没有给这个自动装配添加条件,我们无法自行装配替代默认装配。
我们只能采取以下步骤:
在 Springboot 启动类上增加排除 GatewayAutoConfiguration 的自动装配配置;
继承 GatewayAutoConfiguration 并完全拷贝其装配条件;
覆盖父类
routePredicateHandlerMapping方法,给装配添加条件;继承RoutePredicateHandlerMapping ,覆盖其
lookupRoute方法,符合一定条件的请求,优先从缓存中查找路由。
改造 Gateway
修改启动类,排除自动装配
@SpringBootApplication(exclude = GatewayConfiguration.class)public class GatewayApplication { public static void main(String[] args) { SpringApplication.run(GatewayApplication.class, args); }}继承 GatewayAutoConfiguration
@Configuration(proxyBeanMethods = false)@ConditionalOnProperty(name = "spring.cloud.gateway.enabled", matchIfMissing = true)@EnableConfigurationProperties@AutoConfigureBefore({HttpHandlerAutoConfiguration.class, WebFluxAutoConfiguration.class})@AutoConfigureAfter({GatewayLoadBalancerClientAutoConfiguration.class, GatewayClassPathWarningAutoConfiguration.class})@ConditionalOnClass(DispatcherHandler.class)public class CustomGatewayAutoConfiguration extends GatewayAutoConfiguration { // 实现自定义的RoutePredicateHandlerMapping装配 @Bean public CustomRoutePredicateHandlerMapping customRoutePredicateHandlerMapping( // 通过@Qualifier 制定装配的缓存管理器 @Qualifier("routeCacheManager") CacheManager routeCacheManager, FilteringWebHandler webHandler, RouteLocator routeLocator, GlobalCorsProperties globalCorsProperties, Environment environment) { return new CustomRoutePredicateHandlerMapping( cacheManager, webHandler, routeLocator, globalCorsProperties, environment); } // 覆盖父类同名方法,增加使之失效的条件 @Bean @ConditionalOnMissingBean(RoutePredicateHandlerMapping.class) public RoutePredicateHandlerMapping routePredicateHandlerMapping(FilteringWebHandler webHandler, RouteLocator routeLocator, GlobalCorsProperties globalCorsProperties, Environment environment) { return new RoutePredicateHandlerMapping(webHandler, routeLocator, globalCorsProperties, environment); }}继承 RoutePredicateHandlerMapping
public class CustomRoutePredicateHandlerMapping extends RoutePredicateHandlerMapping { private final Cache specialCache; public CustomRoutePredicateHandlerMapping( CacheManager cacheManager, FilteringWebHandler webHandler, RouteLocator routeLocator, GlobalCorsProperties globalCorsProperties, Environment environment) { super(webHandler, routeLocator, globalCorsProperties, environment); specialCache = cacheManager.getCache("specialRouteCache"); } @Override protected Mono<Route> lookupRoute(ServerWebExchange exchange) { //1. 从exchange中获取请求特征,如path //2. 如果符合特征 则使用缓存,从缓存获取,如果缓存未命中, // 调用 super.lookupRoute(exchange) 并加入缓存 //3. 不符合特征的,直接调用 // 下面演示使用 caffeine 缓存的方式 String specialPath = exchange.getRequest().getPath().subPath(0).value(); // 判断path是否符合缓存规则(一般而言用于仅采用Path断言,或简单结合header或query的情况,下面以只有path为例) if (checkPath(specialPath)) { return CacheMono // 查找缓存 .lookup( key -> Mono.justOrEmpty(specialCache.get(key, Route.class)).map(Signal::next), toKey(specialPath)) // 未命中直接查找路由表 .onCacheMissResume( () -> super.lookupRoute(exchange)) // 然后写到缓存 .andWriteWith( (key, signal) -> Mono.fromRunnable( () -> Optional.ofNullable(signal.get()) .ifPresent(value -> specialCache.put(key, value)) )); } return super.lookupRoute(exchange); } /** * 校验请求特征的方法,此处仅是举例 */ private boolean checkPath(String path) { return true; } /** * 生成cacheKey的方式,此处仅是举例 */ private String toKey(String specialPath) { return specialPath; }}缓存管理配置(注意这里不宜采用 Redis 做缓存,因其性能会较低)
@Configuration@AutoConfigureBefore(CustomGatewayAutoConfiguration.class)public class CacheManagerConfiguration { @Bean @Primary public CacheManager defaultCacheManager() { CaffeineCacheManager cacheManager = new CaffeineCacheManager(); CaffeineSpec spec = CaffeineSpec .parse("initialCapacity=64,maximumSize=512,expireAfterWrite=300s"); cacheManager.setCacheNames(null); return cacheManager; } @Bean public CacheManager routeCacheManager() { CaffeineCacheManager cacheManager = new CaffeineCacheManager(); CaffeineSpec spec = CaffeineSpec .parse("initialCapacity=512,maximumSize=2048,expireAfterWrite=3000s"); cacheManager.setCacheNames(null); return cacheManager; }}以上就简单实现了对 Gateway 的改造,结合业务场景进行具体的性能优化即可,优化后,在路由表较大时(大于 5000 条)能较为明显的提升网关路由性能。
至此修改完成,可以进行下一步测试验证。
测试结果
通过以上图表对比,可以发现,改造后,路由转发性能与路由表大小没有直接关联关系了,性能得到了较大提升。
源码下载
https://gitee.com/eblog/scgw-benchmark-all
https://gitee.com/eblog/scg-dynamic-route
测试记录
直连对照组
Benchmark Mode Cnt Score Error UnitsMyBenchmark.testMethod thrpt 20 990.298 ± 219.989 ops/sMyBenchmark.testMethod avgt 20 0.002 ± 0.001 s/opMyBenchmark.testMethod sample 20205 0.002 ± 0.001 s/opMyBenchmark.testMethod:testMethod·p0.00 sample 0.001 s/opMyBenchmark.testMethod:testMethod·p0.50 sample 0.002 s/opMyBenchmark.testMethod:testMethod·p0.90 sample 0.003 s/opMyBenchmark.testMethod:testMethod·p0.95 sample 0.003 s/opMyBenchmark.testMethod:testMethod·p0.99 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.999 sample 0.011 s/opMyBenchmark.testMethod:testMethod·p0.9999 sample 0.017 s/opMyBenchmark.testMethod:testMethod·p1.00 sample 0.017 s/opMyBenchmark.testMethod ss 20 0.002 ± 0.001 s/op
100 条路由(老版本)
Benchmark Mode Cnt Score Error UnitsMyBenchmark.testMethod thrpt 20 769.948 ± 112.572 ops/sMyBenchmark.testMethod avgt 20 0.003 ± 0.001 s/opMyBenchmark.testMethod sample 15364 0.003 ± 0.001 s/opMyBenchmark.testMethod:testMethod·p0.00 sample 0.002 s/opMyBenchmark.testMethod:testMethod·p0.50 sample 0.002 s/opMyBenchmark.testMethod:testMethod·p0.90 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.95 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.99 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.999 sample 0.008 s/opMyBenchmark.testMethod:testMethod·p0.9999 sample 0.015 s/opMyBenchmark.testMethod:testMethod·p1.00 sample 0.015 s/opMyBenchmark.testMethod ss 20 0.003 ± 0.001 s/op
100 条路由(新版本)
Benchmark Mode Cnt Score Error UnitsMyBenchmark.testMethod thrpt 20 769.099 ± 110.400 ops/sMyBenchmark.testMethod avgt 20 0.003 ± 0.001 s/opMyBenchmark.testMethod sample 15541 0.003 ± 0.001 s/opMyBenchmark.testMethod:testMethod·p0.00 sample 0.002 s/opMyBenchmark.testMethod:testMethod·p0.50 sample 0.002 s/opMyBenchmark.testMethod:testMethod·p0.90 sample 0.003 s/opMyBenchmark.testMethod:testMethod·p0.95 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.99 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.999 sample 0.008 s/opMyBenchmark.testMethod:testMethod·p0.9999 sample 0.012 s/opMyBenchmark.testMethod:testMethod·p1.00 sample 0.012 s/opMyBenchmark.testMethod ss 20 0.003 ± 0.001 s/op
1K 条路由(老版本)
Benchmark Mode Cnt Score Error UnitsMyBenchmark.testMethod thrpt 20 759.265 ± 106.047 ops/sMyBenchmark.testMethod avgt 20 0.003 ± 0.001 s/opMyBenchmark.testMethod sample 15245 0.003 ± 0.001 s/opMyBenchmark.testMethod:testMethod·p0.00 sample 0.001 s/opMyBenchmark.testMethod:testMethod·p0.50 sample 0.003 s/opMyBenchmark.testMethod:testMethod·p0.90 sample 0.003 s/opMyBenchmark.testMethod:testMethod·p0.95 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.99 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.999 sample 0.007 s/opMyBenchmark.testMethod:testMethod·p0.9999 sample 0.014 s/opMyBenchmark.testMethod:testMethod·p1.00 sample 0.015 s/opMyBenchmark.testMethod ss 20 0.003 ± 0.001 s/op
1K 条路由(新版本)
Benchmark Mode Cnt Score Error UnitsMyBenchmark.testMethod thrpt 20 772.978 ± 102.976 ops/sMyBenchmark.testMethod avgt 20 0.003 ± 0.001 s/opMyBenchmark.testMethod sample 15101 0.003 ± 0.001 s/opMyBenchmark.testMethod:testMethod·p0.00 sample 0.002 s/opMyBenchmark.testMethod:testMethod·p0.50 sample 0.003 s/opMyBenchmark.testMethod:testMethod·p0.90 sample 0.003 s/opMyBenchmark.testMethod:testMethod·p0.95 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.99 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.999 sample 0.007 s/opMyBenchmark.testMethod:testMethod·p0.9999 sample 0.016 s/opMyBenchmark.testMethod:testMethod·p1.00 sample 0.016 s/opMyBenchmark.testMethod ss 20 0.003 ± 0.001 s/op
5K 条路由(老版本)
Benchmark Mode Cnt Score Error UnitsMyBenchmark.testMethod thrpt 20 232.624 ± 3.330 ops/sMyBenchmark.testMethod avgt 20 0.008 ± 0.001 s/opMyBenchmark.testMethod sample 4734 0.009 ± 0.001 s/opMyBenchmark.testMethod:testMethod·p0.00 sample 0.008 s/opMyBenchmark.testMethod:testMethod·p0.50 sample 0.008 s/opMyBenchmark.testMethod:testMethod·p0.90 sample 0.009 s/opMyBenchmark.testMethod:testMethod·p0.95 sample 0.009 s/opMyBenchmark.testMethod:testMethod·p0.99 sample 0.011 s/opMyBenchmark.testMethod:testMethod·p0.999 sample 0.015 s/opMyBenchmark.testMethod:testMethod·p0.9999 sample 0.016 s/opMyBenchmark.testMethod:testMethod·p1.00 sample 0.016 s/opMyBenchmark.testMethod ss 20 0.009 ± 0.001 s/op
5K 条路由(新版本)
Benchmark Mode Cnt Score Error UnitsMyBenchmark.testMethod thrpt 20 783.074 ± 112.114 ops/sMyBenchmark.testMethod avgt 20 0.003 ± 0.001 s/opMyBenchmark.testMethod sample 15318 0.003 ± 0.001 s/opMyBenchmark.testMethod:testMethod·p0.00 sample 0.001 s/opMyBenchmark.testMethod:testMethod·p0.50 sample 0.002 s/opMyBenchmark.testMethod:testMethod·p0.90 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.95 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.99 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.999 sample 0.007 s/opMyBenchmark.testMethod:testMethod·p0.9999 sample 0.017 s/opMyBenchmark.testMethod:testMethod·p1.00 sample 0.017 s/opMyBenchmark.testMethod ss 20 0.003 ± 0.001 s/op
1W 条路由(老版本)
Benchmark Mode Cnt Score Error UnitsMyBenchmark.testMethod thrpt 20 122.122 ± 1.789 ops/sMyBenchmark.testMethod avgt 20 0.016 ± 0.001 s/opMyBenchmark.testMethod sample 2464 0.016 ± 0.001 s/opMyBenchmark.testMethod:testMethod·p0.00 sample 0.015 s/opMyBenchmark.testMethod:testMethod·p0.50 sample 0.016 s/opMyBenchmark.testMethod:testMethod·p0.90 sample 0.017 s/opMyBenchmark.testMethod:testMethod·p0.95 sample 0.018 s/opMyBenchmark.testMethod:testMethod·p0.99 sample 0.018 s/opMyBenchmark.testMethod:testMethod·p0.999 sample 0.029 s/opMyBenchmark.testMethod:testMethod·p0.9999 sample 0.030 s/opMyBenchmark.testMethod:testMethod·p1.00 sample 0.030 s/opMyBenchmark.testMethod ss 20 0.017 ± 0.001 s/op
1W 条路由(新版本)
Benchmark Mode Cnt Score Error UnitsMyBenchmark.testMethod thrpt 20 775.200 ± 121.410 ops/sMyBenchmark.testMethod avgt 20 0.003 ± 0.001 s/opMyBenchmark.testMethod sample 15261 0.003 ± 0.001 s/opMyBenchmark.testMethod:testMethod·p0.00 sample 0.001 s/opMyBenchmark.testMethod:testMethod·p0.50 sample 0.003 s/opMyBenchmark.testMethod:testMethod·p0.90 sample 0.003 s/opMyBenchmark.testMethod:testMethod·p0.95 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.99 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.999 sample 0.007 s/opMyBenchmark.testMethod:testMethod·p0.9999 sample 0.014 s/opMyBenchmark.testMethod:testMethod·p1.00 sample 0.014 s/opMyBenchmark.testMethod ss 20 0.003 ± 0.001 s/op
10W 条路由(老版本)
Benchmark Mode Cnt Score Error UnitsMyBenchmark.testMethod thrpt 20 12.765 ± 0.338 ops/sMyBenchmark.testMethod avgt 20 0.159 ± 0.006 s/opMyBenchmark.testMethod sample 260 0.153 ± 0.001 s/opMyBenchmark.testMethod:testMethod·p0.00 sample 0.147 s/opMyBenchmark.testMethod:testMethod·p0.50 sample 0.152 s/opMyBenchmark.testMethod:testMethod·p0.90 sample 0.157 s/opMyBenchmark.testMethod:testMethod·p0.95 sample 0.159 s/opMyBenchmark.testMethod:testMethod·p0.99 sample 0.163 s/opMyBenchmark.testMethod:testMethod·p0.999 sample 0.167 s/opMyBenchmark.testMethod:testMethod·p0.9999 sample 0.167 s/opMyBenchmark.testMethod:testMethod·p1.00 sample 0.167 s/opMyBenchmark.testMethod ss 20 0.155 ± 0.002 s/op
10W 条路由(新版本)
Benchmark Mode Cnt Score Error UnitsMyBenchmark.testMethod thrpt 20 774.979 ± 115.501 ops/sMyBenchmark.testMethod avgt 20 0.003 ± 0.001 s/opMyBenchmark.testMethod sample 15422 0.003 ± 0.001 s/opMyBenchmark.testMethod:testMethod·p0.00 sample 0.002 s/opMyBenchmark.testMethod:testMethod·p0.50 sample 0.002 s/opMyBenchmark.testMethod:testMethod·p0.90 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.95 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.99 sample 0.004 s/opMyBenchmark.testMethod:testMethod·p0.999 sample 0.005 s/opMyBenchmark.testMethod:testMethod·p0.9999 sample 0.011 s/opMyBenchmark.testMethod:testMethod·p1.00 sample 0.012 s/opMyBenchmark.testMethod ss 20 0.003 ± 0.001 s/op
版权声明: 本文为 InfoQ 作者【中原银行】的原创文章。
原文链接:【http://xie.infoq.cn/article/541a1487ba335553db15ae9b9】。文章转载请联系作者。
中原银行
打造科技驱动、创新引领的数字化未来银行。 2020.02.06 加入
中原银行是河南省属法人银行,总部位于河南省郑州市。我行坚持“科技立行、科技兴行”,秉承“稳健 创新 进取 高效”理念,发展移动金融、线上金融,提升综合金融服务能力,金融科技应用水平居国内城商行领先地位。











评论