上节:https://xie.infoq.cn/article/8ab1be6110915e078421d64b5
五、HDFS 存储优化
注:演示纠删码和异构存储需要一共 5 台虚拟机。尽量拿另外一套集群。提前准备 5 台服务器的集群。
5.1 纠删码
5.1.1 纠删码原理
HDFS 默认情况下,一个文件有 3 个副本,这样提高了数据的可靠性,但也带来了 2 倍的冗余开销。 Hadoop3.x 引入了纠删码, 采用计算的方式, 可以节省约 50%左右的存储空间。
纠删码操作相关的命令
[Tom@hadoop102 hadoop-3.1.3]$ hdfs ec
Usage: bin/hdfs ec [COMMAND]
[-listPolicies]
[-addPolicies -policyFile <file>]
[-getPolicy -path <path>]
[-removePolicy -policy <policy>]
[-setPolicy -path <path> [-policy <policy>] [-replicate]]
[-unsetPolicy -path <path>]
[-listCodecs]
[-enablePolicy -policy <policy>]
[-disablePolicy -policy <policy>]
[-help <command-name>]
复制代码
查看当前支持的纠删码策略
[Tom@hadoop102 hadoop-3.1.3]$ hdfs ec -listPolicies
Erasure Coding Policies:
ErasureCodingPolicy=[Name=RS-10-4-1024k, Schema=[ECSchema=[Codec=rs, numDataUnits=10, numParityUnits=4]], CellSize=1048576, Id=5], State=DISABLED
ErasureCodingPolicy=[Name=RS-3-2-1024k, Schema=[ECSchema=[Codec=rs, numDataUnits=3, numParityUnits=2]], CellSize=1048576, Id=2], State=DISABLED
ErasureCodingPolicy=[Name=RS-6-3-1024k, Schema=[ECSchema=[Codec=rs, numDataUnits=6, numParityUnits=3]], CellSize=1048576, Id=1], State=ENABLED
ErasureCodingPolicy=[Name=RS-LEGACY-6-3-1024k, Schema=[ECSchema=[Codec=rs-legacy, numDataUnits=6, numParityUnits=3]], CellSize=1048576, Id=3], State=DISABLED
ErasureCodingPolicy=[Name=XOR-2-1-1024k, Schema=[ECSchema=[Codec=xor, numDataUnits=2, numParityUnits=1]], CellSize=1048576, Id=4], State=DISABLED
复制代码
纠删码策略解释
(1)RS-3-2-1024k:使用 RS 编码,每 3 个数据单元,生成 2 个校验单元,共 5 个单元,也就是说:这 5 个单元中,只要有任意的 3 个单元存在(不管是数据单元还是校验单元,只要总数=3),就可以得到原始数据。每个单元的大小是 1024k=1024*1024=1048576。
(2)RS-10-4-1024k:使用 RS 编码,每 10 个数据单元( cell),生成 4 个校验单元,共 14 个单元,也就是说:这 14 个单元中,只要有任意的 10 个单元存在 (不管是数据单元还是校验单元,只要总数 =10),就可以得到原始数据。每个单元的大小是 1024k=1024*1024=1048576。
(3)RS-6-3-1024k:使用 RS 编码,每 6 个数据单元,生成 3 个校验单元,共 9 个单元,也就是说:这 9 个单元中,只要有任意的 6 个单元存在(不管是数据单元还是校验单元,只要总数 =6),就可以得到原始数据。每个单元的大小是 1024k=1024*1024=1048576。
(4)RS-LEGACY-6-3-1024k:策略和上面的 RS-6-3-1024k 一样,只是编码的算法用的是 rs-legacy。
(5)XOR-2-1-1024k:使用 XOR 编码(速度比 RS 编码快),每 2 个数据单元,生成 1 个校验单元,共 3 个单元,也就是说:这 3 个单元中,只要有任意的 2 个单元存在(不管是数据单元还是校验单元,只要总数 = 2),就可以得到原始数据。每个单元的大小是 1024k=1024*1024=1048576。
5.1.2 纠删码案例实操
纠删码策略是给具体一个路径设置 。所有往此路径下存储的文件,都会执行此策略。默认只开启对 RS-6-3-1024k 策略的支持 ,如要使用别的策略需要提前启用 。
需求:将 /input 目录设置为 RS-3-2-1024k 策略
具体步骤
(1)开启对 RS-3-2-1024k 策略的支持
[Tom@hadoop102 hadoop-3.1.3]$ hdfs ec -enablePolicy -policy RS-3-2-1024k
Erasure coding policy RS-3-2-1024k is enabled
复制代码
(2)在 HDFS 创建目录,并设置 RS-3-2-1024k 策略
[Tom@hadoop102 hadoop-3.1.3]$ hdfs dfs -mkdir /input
[Tom@hadoop102 hadoop-3.1.3]$ hdfs ec -setPolicy -path /input -policy RS-3-2-1024k
Set RS-3-2-1024k erasure coding policy on /input
复制代码
(3)上传文件,并查看文件编码后的存储情况
[Tom@hadoop102 hadoop-3.1.3]$ hdfs dfs -put web.log /input
复制代码
(4)查看存储路径的数据单元和校验单元,并作破坏实验
5.2 异构存储(冷热数据分离)
异构存储主要解决,不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。
关于存储类型
RAM_DISK:(内存镜像文件系统)
SSD:(SSD 固态硬盘)
DISK:(普通磁盘,在 HDFS 中,如果没有主动声明数据目录存储类型默认都是 DISK)
ARCHIVE:(没有特指哪种存储介质,主要的指的是计算能力比较弱而存储密度比较高的存储介质,用来解决数据量的容量扩增的问题,一般用于归档)
关于存储策略 说明:从 Lazy_Persist 到 Cold,分别代表了设备的访问速度从快到慢
5.2.1 异构存储 Shell 操作
(1)查看当前有哪些存储策略可以用
[Tom@hadoop102 ~]$ hdfs storagepolicies -listPolicies
Block Storage Policies:
BlockStoragePolicy{PROVIDED:1, storageTypes=[PROVIDED, DISK], creationFallbacks=[PROVIDED, DISK], replicationFallbacks=[PROVIDED, DISK]}
BlockStoragePolicy{COLD:2, storageTypes=[ARCHIVE], creationFallbacks=[], replicationFallbacks=[]}
BlockStoragePolicy{WARM:5, storageTypes=[DISK, ARCHIVE], creationFallbacks=[DISK, ARCHIVE], replicationFallbacks=[DISK, ARCHIVE]}
BlockStoragePolicy{HOT:7, storageTypes=[DISK], creationFallbacks=[], replicationFallbacks=[ARCHIVE]}
BlockStoragePolicy{ONE_SSD:10, storageTypes=[SSD, DISK], creationFallbacks=[SSD, DISK], replicationFallbacks=[SSD, DISK]}
BlockStoragePolicy{ALL_SSD:12, storageTypes=[SSD], creationFallbacks=[DISK], replicationFallbacks=[DISK]}
BlockStoragePolicy{LAZY_PERSIST:15, storageTypes=[RAM_DISK, DISK], creationFallbacks=[DISK], replicationFallbacks=[DISK]}
复制代码
(2)为指定路径 (数据存储目录) 设置指定的存储策略
hdfs storagepolicies -setStoragePolicy -path xxx -policy xxx
复制代码
(3)获取指定路径(数据存储目录或文件)的存储策略
hdfs storagepolicies -getStoragePolicy -path xxx
复制代码
(4)取消存储策略;执行改命令之后该目录或者文件,以其上级的目录为准,如果是根目录,那么就是 HOT
hdfs storagepolicies -unsetStoragePolicy -path xxx
复制代码
(5)查看文件块的分布
bin/hdfs fsck xxx -files -blocks -locations
复制代码
(6)查看集群节点
5.2.2 测试环境准备
测试环境描述
服务器规模:5 台
集群配置:副本数为 2,创建好带有存储类型的目录(提前创建)
集群规划:
配置文件信息
(1)为 hadoop102 节点的 hdfs-site.xml 添加如下信息
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.storage.policy.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>[SSD]file:///opt/module/hadoop-3.1.3/hdfsdata/ssd,[RAM_DISK]file:///opt/module/hadoop-3.1.3/hdfsdata/ram_disk</value>
</property>
复制代码
(2)为 hadoop103 节点的 hdfs-site.xml 添加如下信息
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.storage.policy.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>[SSD]file:///opt/module/hadoop-3.1.3/hdfsdata/ssd,[DISK]file:///opt/module/hadoop-3.1.3/hdfsdata/disk</value>
</property>
复制代码
(3)为 hadoop104 节点的 hdfs-site.xml 添加如下信息
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.storage.policy.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>[RAM_DISK]file:///opt/module/hdfsdata/ram_disk,[DISK]file:///opt/module/hadoop-3.1.3/hdfsdata/disk</value>
</property>
复制代码
(4)为 hadoop105 节点的 hdfs-site.xml 添加如下信息
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.storage.policy.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>[ARCHIVE]file:///opt/module/hadoop-3.1.3/hdfsdata/archive</value>
</property>
复制代码
(5)为 hadoop106 节点的 hdfs-site.xml 添加如下信息
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.storage.policy.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>[ARCHIVE]file:///opt/module/hadoop-3.1.3/hdfsdata/archive</value>
</property>
复制代码
数据准备
(1)启动集群
[Tom@hadoop102 hadoop-3.1.3]$ hdfs namenode -format
[Tom@hadoop102 hadoop-3.1.3]$ myhadoop.sh start
复制代码
(2)在 HDFS 上创建文件目录
[Tom@hadoop102 hadoop-3.1.3]$ hadoop fs -mkdir /hdfsdata
复制代码
(3)将文件资料上传
[Tom@hadoop102 hadoop-3.1.3]$ hadoop fs -put /opt/module/hadoop-3.1.3/NOTICE.txt /hdfsdata
复制代码
5.2.3 HOT 存储策略案例
(1)最开始我们未设置存储策略的情况下,我们获取该目录的存储策略
[Tom@hadoop102 hadoop-3.1.3]$ hdfs storagepolicies -getStoragePolicy -path /hdfsdata
复制代码
(2)我们查看上传的文件块分布
[Tom@hadoop102 hadoop-3.1.3]$ hdfs fsck /hdfsdata-files -blocks -locations
[DatanodeInfoWithStorage[192.168.10.104:9866,DS-0b133854-7f9e-48df-939b-5ca6482c5afb,DISK], DatanodeInfoWithStorage[192.168.10.103:9866,DS-ca1bd3b9-d9a5-4101-9f92-3da5f1baa28b,DISK]]
复制代码
未设置存储策略,所有文件块都存储在 DISK 下。 所以, 默认存储策略为 HOT。
5.2.4 WARM 存储策略测试
(1)接下来我们为数据降温
[Tom@hadoop102 hadoop-3.1.3]$ hdfs storagepolicies -setStoragePolicy -path /hdfsdata -policy WARM
复制代码
(2)再次查看文件块分布,我们可以看到文件块依然放在原处。
[atguigu@hadoop102 hadoop-3.1.3]$ hdfs fsck /hdfsdata-files -blocks -locations
复制代码
(3)我们需要让他 HDFS 按照存储策略自行移动文件块
[Tom@hadoop102 hadoop-3.1.3]$ hdfs mover /hdfsdata
复制代码
(4)再次查看文件块分布
[Tom@hadoop102 hadoop-3.1.3]$ hdfs fsck /hdfsdata -files -blocks -locations
[DatanodeInfoWithStorage[192.168.10.105:9866,DS-d46d08e1-80c6-4fca-b0a2-4a3dd7ec7459,ARCHIVE], DatanodeInfoWithStorage[192.168.10.103:9866,DS-ca1bd3b9-d9a5-4101-9f92-3da5f1baa28b,DISK]]
复制代码
文件块一半在 DISK,一半在 ARCHIVE,符合我们设置的 WARM 策略
5.2.5 COLD 策略测试
(1)我们继续将数据降温为 cold
[Tom@hadoop102 hadoop-3.1.3]$ hdfs storagepolicies -setStoragePolicy -path /hdfsdata -policy COLD
复制代码
注意 :当我们将目录设置为 COLD 并且我们未配置 ARCHIVE 存储目录的情况下,不可以向该目录直接上传文件,会报出异常。
(2)手动转移
[Tom@hadoop102 hadoop-3.1.3]$ hdfs mover /hdfsdata
复制代码
(3)检查文件块的分布
[Tom@hadoop102 hadoop-3.1.3]$ bin/hdfs fsck /hdfsdata -files -blocks -locations
[DatanodeInfoWithStorage[192.168.10.105:9866,DS-d46d08e1-80c6-4fca-b0a2-4a3dd7ec7459,ARCHIVE], DatanodeInfoWithStorage[192.168.10.106:9866,DS-827b3f8b-84d7-47c6-8a14-0166096f919d,ARCHIVE]]
复制代码
所有文件块都在 ARCHIVE,符合 COLD 存储策略。
5.2.6 ONE_SSD 策略测试
(1)接下来我们将存储策略从默认的 HOT 更改为 One_SSD
[Tom@hadoop102 hadoop-3.1.3]$ hdfs storagepolicies -setStoragePolicy -path /hdfsdata -policy One_SSD
复制代码
(2)手动转移文件块
[Tom@hadoop102 hadoop-3.1.3]$ hdfs mover /hdfsdata
复制代码
(3)转移完成后,检查文件块的分布
[Tom@hadoop102 hadoop-3.1.3]$ bin/hdfs fsck /hdfsdata -files -blocks -locations
[DatanodeInfoWithStorage[192.168.10.104:9866,DS-0b133854-7f9e-48df-939b-5ca6482c5afb,DISK], DatanodeInfoWithStorage[192.168.10.103:9866,DS-2481a204-59dd-46c0-9f87-ec4647ad429a,SSD]]
复制代码
文件块分布为一半在 SSD,一半在 DISK,符合 One_SSD 存储策略。
5.2.7 ALL_SSD 策略测试
(1)接下来我们将存储策略从默认的 HOT 更改为 All_SSD
[Tom@hadoop102 hadoop-3.1.3]$ hdfs storagepolicies -setStoragePolicy -path /hdfsdata -policy All_SSD
复制代码
(2)手动转移文件块
[Tom@hadoop102 hadoop-3.1.3]$ hdfs mover /hdfsdata
复制代码
(3)转移完成后,检查文件块的分布
[Tom@hadoop102 hadoop-3.1.3]$ bin/hdfs fsck /hdfsdata -files -blocks -locations
[DatanodeInfoWithStorage[192.168.10.102:9866,DS-c997cfb4-16dc-4e69-a0c4-9411a1b0c1eb,SSD], DatanodeInfoWithStorage[192.168.10.103:9866,DS-2481a204-59dd-46c0-9f87-ec4647ad429a,SSD]]
复制代码
所有的文件块都存储在 SSD,符合 All_SSD 存储策略。
5.2.8 LAZY_PERSIST 策略测试
(1))继续改变策略,将存储策略改为 lazy_persist
[Tom@hadoop102 hadoop-3.1.3]$ hdfs storagepolicies -setStoragePolicy -path /hdfsdata -policy policy lazy_persist
复制代码
(2)手动转移文件块
[Tom@hadoop102 hadoop-3.1.3]$ hdfs mover /hdfsdata
复制代码
(3)转移完成后,检查文件块的分布
[Tom@hadoop102 hadoop-3.1.3]$ bin/hdfs fsck /hdfsdata -files -blocks -locations
[DatanodeInfoWithStorage[192.168.10.104:9866,DS-0b133854-7f9e-48df-939b-5ca6482c5afb,DISK], DatanodeInfoWithStorage[192.168.10.103:9866,DS-ca1bd3b9-d9a5-4101-9f92-3da5f1baa28b,DISK]]
复制代码
这里我们发现所有的文件块都是存储在
DISK,按照理论一个副本存储在 RAM_DISK,其他副本存储在 DISK 中,这是因为,我们还需要配置" dfs.datanode.max.locked.memory","dfs.block.size"参数。
那么出现存储策略为 LAZY_PERSIST 时,文件块副本都存储在 DISK 上的原因有如下两点:
(1)当客户端所在的 DataNode 节点没有 RAM_DISK 时,则会写入客户端所在的 DataNode 节点的 DISK 磁盘,其余副本会写入其他节点的 DISK 磁盘。
(2)当客户端所在的 DataNode 有 RAM_DISK,但 dfs.datanode.max.locked.memory 参数值未设置或者设置过小(小于“ dfs.block.size”参数值)时,则会写入客户端所在的 DataNode 节点的 DISK 磁盘,其余副本会写入其他节点的 DISK 磁盘。
但是由于虚拟机的“max locked memory”为 64KB,所以,如果参数配置过大,还会报出错误:
ERROR org.apache .hadoop.hdfs.server.datanode.DataNode: Exception in secureMainjava.lang.RuntimeException: Cannot start datanode because the configured max locked memory size(dfs.datanode.max.locked.memory) of 209715200 bytes is more than the datanode's available RLIMIT_ MEMLOCK ulimit of 65536 bytes.
复制代码
我们可以通过该命令查询此参数的内存
[Tom@hadoop102 hadoop-3.1.3]$ ulimit -a
max locked memory (kbytes, -l) 64
复制代码
六、HDFS 故障排除
6.1 集群安全模式
安全模式:文件系统只接受读数据请求,而不接受删除、修改等变更请求
进入安全模式场景:
NameNode 在加载镜像文件和编辑日志期间处于安全模式;
NameNode 再接收 DataNode 注册时,处于安全模式。
退出安全模式条件
dfs.namenode.safemode.min.datanodes
:最小可用 datanode 数量 ,默认 0
dfs.namenode.safemode.threshold-pct
:副本数达到最小要求的 block 占系统总 block 数的百分比 ,默认 0.999f。(只允许丢一个块)
dfs.namenode.safemode.extension
:稳定时间 ,默认值 30000 毫秒,即 30 秒
基本语法
集群处于安全模式,不能执行重要操作(写操作) 。 集群启动完成后,自动退出安全模式。
(1)bin/hdfs dfsadmin -safemode get(功能描述:查看安全模式状态)
(2)bin/hdfs dfsadmin -safemode enter (功能描述:进入安全模式状态)
(3)bin/hdfs dfsadmin -safemode leave(功能描述:离开安全模式状态)
(4)bin/hdfs dfsadmin -safemode wait(功能描述:等待安全模式状态)
复制代码
案例:集群启动后,立即来到集群上删除数据,提示集群处于安全模式
6.2 慢磁盘监控
“慢磁盘”指的时写入数据非常慢的一类磁盘。其实慢性磁盘并不少见,当机器运行时间长了,上面跑的任务多了,磁盘的读写性能自然会退化,严重时就会出现写入数据延时的问题。
如何发现慢磁盘?
正常在 HDFS 上创建一个目录,只需要不到 1s 的时间。如果你发现创建目录超过 1 分钟及以上,而且这个现象并不是每次都有。只是偶尔慢了一下,就很有可能存在慢磁盘。可以采用如下方法找出是哪块磁盘慢:
通过心跳未联系时间
一般出现慢磁盘现象,会影响到 DataNode 与 NameNode 之间的心跳。正常情况心跳时间间隔是 3s。超过 3s 说明有异常。
fio 命令,测试磁盘的读写性能
(1)顺序读测试
[Tom@hadoop102 ~]#sudo yum install -y fio
[Tom@hadoop102 ~]# sudo fio -filename=/home/Tom/test.log -direct=1 -iodepth 1 -thread -rw=read -ioengine=psync-bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_r
Run status group 0 (all jobs):
READ: bw=360MiB/s (378MB/s), 360MiB/s-360MiB/s (378MB/s-378MB/s), io=20.0GiB (21.5GB), run=56885-56885msec
复制代码
结果显示,磁盘的总体顺序读速度为 360MiB/s
(2)顺序写测试
[Tom@hadoop102 ~]# sudofio -filename=/home/Tom/test.log -direct=1 -iodepth 1 -thread -rw=write -ioengine=psync -bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_w
Run status group 0 (all jobs):
WRITE: bw=341MiB/s (357MB/s), 341MiB/s-341MiB/s (357MB/s-357MB/s), io=19.0GiB (21.4GB), run=60001-60001msec
复制代码
结果显示,磁盘的总体顺序写速度为 341MiB/s
(3)随机写测试
[Tom@hadoop102 ~]#sudofio -filename=/home/Tom/test.log -direct=1 -iodepth 1 -thread -rw=randwrite -ioengine=psync-bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_randw
Run status group 0 (all jobs):
WRITE: bw=309MiB/s (324MB/s), 309MiB/s-309MiB/s (324MB/s-324MB/s), io=18.1GiB (19.4GB), run=60001-60001msec
复制代码
结果显示,磁盘的总体随机写速度为 309MiB/s。
(4)顺序读测试
[Tom@hadoop102 ~]# sudo fio -filename=/home/Tom/test.log -direct=1 -iodepth 1 -thread -rw=randrw -rwmixread=70 -ioengine=psync -bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_r_w -ioscheduler=noop
Run status group 0 (all jobs):
READ: bw=220MiB/s(231MB/s), 220MiB/s-220MiB/s (231MB/s-231MB/s), io=12.9GiB (13.9GB), run=60001-60001msec
WRITE: bw=94.6MiB/s (99.2MB/s), 94.6MiB/s-94.6MiB/s (99.2MB/s-99.2MB/s), io=5674MiB (5950MB), run=60001-60001msec
复制代码
结果显示,磁盘的总体混合随机读写 ,读速度为 220MiB/s,写速度 94.6MiB/s。
6.3 小文件归档
HDFS 存储小文件弊端
每个文件均按块存储,每个块的元数据存储在 NameNode 的内存中,因此 HDFS 存储小文件会非常低效。因为大量的小文件会耗尽 NameNode 中的大部分内存。但注意,存储小文件所需要的磁盘容量和数据块的大小无关。例如,一个 1MB 的文件设置为 128MB 的块存储,实际使用的是 1MB 的磁盘空间,而不是 128MB。
解决存储小文件办法之一
HDFS 存档文件或 HAR 文件,是一个更高效的文件存档工具, 它将文件存入 HDFS 块,在减少 NameNode 内存使用的同时,允许对文件进行透明的访问。具体说来, HDFS 存档文件对内还是一个一个独立文件,对 NameNode 而言却是一个整体,减少了 NameNode 的内存。
案例实操
(1)需要启动 YARN 进程
[Tom@hadoop102 hadoop 3 1 3 ]$ start-yarn.sh
复制代码
(2)归档文件
把 /input 目录里面的所有文件归档成一个叫 input.har 的归档文件,并把归档 后文件存储到 /output 路径下。
[Tom@hadoop102 hadoop-3.1.3]$ hadoop archive -archiveName input.har -p /input /output
复制代码
(3)查看文档
[Tom@hadoop102 hadoop-3.1.3]$ hadoop fs -ls /output/input.har
Found 4 items
-rw-r--r-- 3 Tom supergroup 0 2021-06-26 17:26 /output/input.har/_SUCCESS
-rw-r--r-- 3 Tom supergroup 268 2021-06-26 17:26 /output/input.har/_index
-rw-r--r-- 3 Tom supergroup 23 2021-06-26 17:26 /output/input.har/_masterindex
-rw-r--r-- 3 Tom supergroup 74 2021-06-26 17:26 /output/input.har/part-0
[Tom@hadoop102 hadoop-3.1.3]$ hadoop fs -ls har:///output/input.har
2021-06-26 17:33:50,362 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
Found 3 items
-rw-r--r-- 3 Tom supergroup 38 2021-06-26 17:24 har:///output/input.har/shu.txt
-rw-r--r-- 3 Tom supergroup 19 2021-06-26 17:24 har:///output/input.har/wei.txt
-rw-r--r-- 3 Tom supergroup 17 2021-06-26 17:24 har:///output/input.har/wu.txt
复制代码
(4)解归档文件
[Tom@hadoop102 hadoop-3.1.3]$ hadoop fs -cp har:///output/input.har/* /
复制代码
七、MapReduce 生产经验
MapReduce 跑的慢的原因
(1)计算机性能:CPU、内存、磁盘、网络
(2)I/O 操作优化:数据倾斜;Map 运行时间太长,导致 Reduce 等待过久;小文件过多
MapReduce 常用调优参数
MapReduce 数据倾斜问题
数据频率倾斜——某一个区域的数据量要远远大于其他区域。
数据大小倾斜——部分记录的大小远远大于平均值。
减少数据倾斜的方法:
(1)首先检查是否空值过多造成的数据倾斜。生产环境,可以直接过滤掉空值;如果想保留空值,就自定义分区,将空值加随机数打散。最后再二次聚合 。
(2)能在 map 阶段提前处理,最好先在 Map 阶段处理。如: Combiner、 MapJoin
(3)设置多个 reduce 个数
八、Hadoop 综合调优
8.1 Hadoop 小文件优化方法
8.1.1 Hadoop 小文件弊端
HDFS 上每个文件都要在 NameNode 上创建对应的元数据,这个元数据的大小约为 150byte,这样当小文件比较多的时候,就会产生很多的元数据文件 一方面会大量占用 NameNode 的内存空间 另一方面就是元数据文件过多,使得寻址索引速度变慢。
小文件过多,在进行 MR 计算时,会生成过多切片,需要启动过多的 MapTask。每个 MapTask 处理的数据量小, 导致 MapTask 的处理时间比启动时间还小,白白消耗资源。
8.1.2 Hadoop 小文件解决方案
1)在数据采集的时候,就将小文件或小批数据合成大文件再上传 HDFS(数据源头)
2)Hadoop Archive(存储方向)
是一个高效的将小文件放入 HDFS 块中的文件存档工具,能够将多个小文件打包成一个 HAR 文件,从而达到减少 NameNode 的内存使用。
3)CombineTextInputFormat(计算方向)
CombineTextInputFormat 用于将多个小文件在切片过程中生成一个单独的切片或者少量的切片。
4)开启 uber 模式,实现 JVM 重用 (计算方向)
默认情况下,每个 Task 任务都需要启动一个 JVM 来运行,如果 Task 任务计算的数据量很小,我们可以让同一个 Job 的多个 Task 运行在一个 JVM 中,不必为每个 Task 都开启一个 JVM。
(1)未开启 uber 模式,在 /input 路径上上传多个小文件 并执行 wordcount 程序
[Tom@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output2
复制代码
(2)观察控制台
2021-06-26 16:18:07,607 INFO mapreduce.Job: Job job_1613281510851_0002 running in uber mode : false
复制代码
(3)观察 http://hadoop103:8088/cluster
(4)开启 uber 模式,在 mapred-site.xml 中添加如下配置
<!--开启uber模式,默认关闭-->
<property>
<name>mapreduce.job.ubertask.enable</name>
<value>true</value>
</property>
<!--uber模式中最大的mapTask数量,可向下修改-->
<property>
<name>mapreduce.job.ubertask.maxmaps</name>
<value>9</value>
</property>
<!--uber模式中最大的reduce数量,可向下修改-->
<property>
<name>mapreduce.job.ubertask.maxreduces</name>
<value>1</value>
</property>
<!--uber模式中最大的输入数据量,默认使用dfs.blocksize 的值,可向下修改-->
<property>
<name>mapreduce.job.ubertask.maxbytes</name>
<value></value>
</property>
复制代码
(5)分发配置
[Tom@hadoop102 hadoop]$ xsync mapred-site.xml
复制代码
(6)再次执行 wordcount 程序
[Tom@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output2
复制代码
(7)观察控制台
2021-06-27 16:28:36,198 INFO mapreduce.Job: Job job_1613281510851_0003 running in uber mode : true
复制代码
(8)观察 http://hadoop103:8088/cluster
8.2 测试 MapReduce 计算性能
使用 Sort 程序评测 MapReduce
注:一个虚拟机不超过 150G 磁盘尽量不要执行这段代码
(1)使用 RandomWriter 来产生随机数,每个节点运行 10 个 Map 任务,每个 Map 产生大约 1G 大小的二进制随机数
[Tom@hadoop102 mapreduce]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar randomwriter random-data
复制代码
(2)执行 Sort 程序
[Tom@hadoop102 mapreduce]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar sortrandom-data sorted-data
复制代码
(3)验证数据是否真正排好序了
[Tom@hadoop102 mapreduce]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.3-tests.jar testmapredsort -sortInput random-data -sortOutput sorted-data
复制代码
8.3 企业开发场景案例
8.3.1 需求
(1)需求:从 1G 数据中,统计每个单词出现次数。服务器 3 台,每台配置 4G 内存,4 核 CPU,4 线程。
(2)需求分析:
1G/128m=8 个 MapTask;1 个 ReduceTask;1 个 mrAppMaster,平均每个节点运行 10 个/3 台≈3 个任务(4 3 3)
8.3.2 HDFS 参数调优
(1)修改 hadoop-env.sh
export HDFS_NAMENODE_OPTS="-Dhadoop.security.logger=INFO,RFAS-Xmx1024m"
export HDFS_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS-Xmx1024m"
复制代码
(2)修改 hdfs-site.xml
<!--NameNode有一个工作线程池,默认值是10-->
<property>
<name>dfs.namenode.handler.count</name>
<value>21</value>
</property>
复制代码
(3)修改 core-site.xml
<!--配置垃圾回收时间为60分钟-->
<property>
<name>fs.trash.interval</name>
<value>60</value>
</property>
复制代码
(4)分发配置
[Tom@hadoop102 hadoop]$ xsync hadoop-env.sh hdfs-site.xml core-site.xml
复制代码
8.3.3 MapReduce 参数调优
(1)修改 mapred-site.xml
<!--环形缓冲区大小,默认100m-->
<property>
<name>mapreduce.task.io.sort.mb</name>
<value>100</value>
</property>
<!--环形缓冲区溢写阈值,默认0.8-->
<property>
<name>mapreduce.map.sort.spill.percent</name>
<value>0.80</value>
</property>
<!--merge合并次数,默认10个-->
<property>
<name>mapreduce.task.io.sort.factor</name>
<value>10</value>
</property>
<!--maptask内存,默认1g;maptask堆内存大小默认和该值大小一致mapreduce.map.java.opts-->
<property>
<name>mapreduce.map.memory.mb</name>
<value>-1</value>
<description>The amount of memory to request from the scheduler for each map task. If this is not specified or is non-positive, it is inferred frommapreduce.map.java.opts and mapreduce.job.heap.memory-mb.ratio. If java-opts are also not specified, we set it to 1024.
</description>
</property>
<!--matask的CPU核数,默认1个-->
<property>
<name>mapreduce.map.cpu.vcores</name>
<value>1</value>
</property>
<!--matask异常重试次数,默认4次-->
<property>
<name>mapreduce.map.maxattempts</name>
<value>4</value>
</property>
<!--每个Reduce去Map中拉取数据的并行数。默认值是5-->
<property>
<name>mapreduce.reduce.shuffle.parallelcopies</name>
<value>5</value>
</property>
<!--Buffer大小占Reduce可用内存的比例,默认值0.7-->
<property>
<name>mapreduce.reduce.shuffle.input.buffer.percent</name>
<value>0.70</value>
</property>
<!--Buffer中的数据达到多少比例开始写入磁盘,默认值0.66。-->
<property>
<name>mapreduce.reduce.shuffle.merge.percent</name>
<value>0.66</value>
</property>
<!--reducetask内存,默认1g;reducetask堆内存大小默认和该值大小一致mapreduce.reduce.java.opts -->
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>-1</value>
<description>The amount of memory to request from the scheduler for each reduce task. If this is not specified or is non-positive, it is inferred
from mapreduce.reduce.java.opts and mapreduce.job.heap.memory-mb.ratio.
If java-opts are also not specified, we set it to 1024.
</description>
</property>
<!--reducetask的CPU核数,默认1个-->
<property>
<name>mapreduce.reduce.cpu.vcores</name>
<value>2</value>
</property>
<!--reducetask失败重试次数,默认4次-->
<property>
<name>mapreduce.reduce.maxattempts</name>
<value>4</value>
</property>
<!--当MapTask完成的比例达到该值后才会为ReduceTask申请资源。默认是0.05-->
<property>
<name>mapreduce.job.reduce.slowstart.completedmaps</name>
<value>0.05</value>
</property>
<!--如果程序在规定的默认10分钟内没有读到数据,将强制超时退出-->
<property>
<name>mapreduce.task.timeout</name>
<value>600000</value>
</property>
复制代码
(2)分发配置
[Tom@hadoop102 hadoop]$ xsync mapred-site.xml
复制代码
8.3.4 Yarn 参数调优
(1)修改 yarn-site.xml 配置参数如下:
<!--选择调度器,默认容量-->
<property>
<description>The class to use as the resource scheduler.</description>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
<!--ResourceManager处理调度器请求的线程数量,默认50;如果提交的任务数大于50,可以增加该值,但是不能超过3台* 4线程=12线程(去除其他应用程序实际不能超过8)-->
<property>
<description>Number of threads to handle scheduler interface.</description>
<name>yarn.resourcemanager.scheduler.client.thread-count</name>
<value>8</value>
</property>
<!--是否让yarn自动检测硬件进行配置,默认是false,如果该节点有很多其他应用程序,建议手动配置。如果该节点没有其他应用程序,可以采用自动-->
<property>
<description>Enable auto-detection of node capabilities such as memory and CPU.</description>
<name>yarn.nodemanager.resource.detect-hardware-capabilities</name>
<value>false</value>
</property>
<!--是否将虚拟核数当作CPU核数,默认是false,采用物理CPU核数-->
<property>
<description>Flag to determine if logical processors(such as hyperthreads) should be counted as cores. Only applicable on Linux when yarn.nodemanager.resource.cpu-vcores is set to -1 and yarn.nodemanager.resource.detect-hardware-capabilities is true.</description>
<name>yarn.nodemanager.resource.count-logical-processors-as-cores</name>
<value>false</value>
</property>
<!--虚拟核数和物理核数乘数,默认是1.0-->
<property>
<description>Multiplier to determine how to convert phyiscal cores to vcores. This value is used if yarn.nodemanager.resource.cpu-vcores is set to -1(which implies auto-calculate vcores) and yarn.nodemanager.resource.detect-hardware-capabilities is set to true. Thenumber of vcores will be calculated asnumber of CPUs * multiplier.</description>
<name>yarn.nodemanager.resource.pcores-vcores-multiplier</name>
<value>1.0</value>
</property>
<!--NodeManager使用内存数,默认8G,修改为4G内存-->
<property>
<description>Amount of physical memory, in MB, that can be allocated for containers. If set to -1 and yarn.nodemanager.resource.detect-hardware-capabilities is true, it is automatically calculated(in case of Windows and Linux).In other cases, the default is 8192MB.</description>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>4096</value>
</property>
<!--nodemanager的CPU核数,不按照硬件环境自动设定时默认是8个,修改为4个-->
<property>
<description>Number of vcores that can be allocated
for containers. This is used by the RM scheduler when allocating resources for containers. This is not used to limit the number of CPUs used by YARN containers. If it is set to -1 and yarn.nodemanager.resource.detect-hardware-capabilities is true, it is automatically determined from the hardware in case of Windows and Linux.In other cases, number of vcores is 8 by default.</description>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>4</value>
</property>
<!--容器最小内存,默认1G -->
<property>
<description>The minimum allocation for every container request at the RMin MBs. Memory requests lower than this will be set to the value of thisproperty. Additionally, a node manager that is configured to have less memorythan this value will be shut down by the resource manager.</description>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
</property>
<!--容器最大内存,默认8G,修改为2G -->
<property>
<description>The maximum allocation for every container request at the RMin MBs. Memory requests higher than this will throw anInvalidResourceRequestException.</description>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>2048</value>
</property>
<!--容器最小CPU核数,默认1个-->
<property>
<description>The minimum allocation for every container request at the RMin terms of virtual CPU cores. Requests lower than this will be set to thevalue of this property. Additionally, a node manager that is configured tohave fewer virtual cores than this value will be shut down by the resourcemanager.</description>
<name>yarn.scheduler.minimum-allocation-vcores</name>
<value>1</value>
</property>
<!--容器最大CPU核数,默认4个,修改为2个-->
<property>
<description>The maximum allocation for every container request at the RMin terms of virtual CPU cores. Requests higher than this will throw an InvalidResourceRequestException.</description>
<name>yarn.scheduler.maximum-allocation-vcores</name>
<value>2</value>
</property>
<!--虚拟内存检查,默认打开,修改为关闭-->
<property>
<description>Whether virtual memory limits will be enforced for containers.</description>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<!--虚拟内存和物理内存设置比例,默认2.1 -->
<property>
<description>Ratio between virtual memory to physical memory whensetting memory limits for containers. Container allocations areexpressed in terms of physical memory, and virtual memory usageis allowed to exceed this allocation by this ratio.</description>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2.1</value>
</property>
复制代码
(2)分发配置
[Tom@hadoop102 hadoop]$ xsync yarn-site.xml
复制代码
8.3.5 执行程序
(1)重启集群
[Tom@hadoop102 hadoop-3.1.3]$ sbin/stop-yarn.sh
[Tom@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
复制代码
(2)执行 WordCount 程序
[Tom@hadoop102 hadoop 3.1.3]$ hadoop jar
share/hadoop/ mapreduce/hadoop mapreduce examples 3.1.3.jar
wordcount /input /output
复制代码
(3)观察 Yarn 任务执行页面 http://hadoop103:8088/cluster/apps
评论