写点什么

被 MySQL 慢日志查询搞废了?3 分钟教你快速定位慢查询问题!

发布于: 2021 年 03 月 25 日
被MySQL慢日志查询搞废了?3分钟教你快速定位慢查询问题!

一条慢查询会造成什么后果?刚开始使用 MySQL 的开发、初级 DBA 以为就是简单的查询变慢些,体验稍微有一丢丢影响,殊不知,慢查询的破坏力远不止如此。业务高峰期,这头 SQL 还没处理完,大量新的查询请求堆积,CPU 使用率长时间居高不下,甚至高达 100%,系统直接崩溃……慢查询这样的黑天鹅事件,可能直接影响业务稳定性,造成巨大经济损失。


慢查询,字面理解就是查询慢的意思,比如某类查询,正常情况下消耗 100ms 左右,异常时可能飙升到 15s。为定位慢查询问题,我们可以按如下几个步骤进行:

一、开启慢日志;

二、使用慢日志查询分析管理工具;

三、基于已有的慢日志分析,对系统本身做优化(如查询语句或表结构设计方面)。


启用慢日志,定位异常

慢日志默认情况下时不开启的,如果需要对 SQL 做优化,可以开启这个功能。登陆 MySQL 后,执行如下 SQL 语句即可开启慢日志(这里以 MySQL 5.7.33 为例 ,其它版本基本通用):

SET GLOBAL slow_query_log = 'ON';-- 未使用索引的查询也认为是一个可能的慢查询set global log_queries_not_using_indexes = 'ON';
复制代码

一般情况下,MySQL 慢日志位于 /var/lib/mysql/<host-name>-slow.log,我们可以模拟一个慢查询,然后即可看到慢日志记录产生:

-- 手动触发一个慢查询:MySQL默认认为,一个大于 10s 的查询就是慢查询SELECT sleep(11);
复制代码

看下慢查询日志:

$ sudo cat /var/lib/mysql/ubt-server-slow.log
/usr/sbin/mysqld, Version: 5.7.33-0ubuntu0.18.04.1 ((Ubuntu)). started with:
Tcp port: 3306 Unix socket: /var/run/mysqld/mysqld.sock
# Time: 2021-03-12T08:52:54.227174Z
# User@Host: df-test[df-test] @ [10.100.64.118] Id: 2
# Query_time: 11.000551 Lock_time: 0.000000 Rows_sent: 1 Rows_examined: 0
use number1;
SET timestamp=1615539174;
select sleep(11);
复制代码

从该日志中,我们能看到如下几个信息(根据不同的 MySQL 版本或者配置,这些信息可能有增减):


  • 产生时间:2021-03-12T08:52:54.227174Z

  • 来源:df-test[df-test] @  [10.100.64.118],即用户 df-test 在 10.100.64.118 这个机器上执行了这个查询

  • 查询统计:如消耗的时间,发送/接收的行数

  • 具体的 SQL 语句


从这些信息中,我们可以比较清晰地知道这个慢查询的来龙去脉,比较精确地定位具体的业务代码。但这里有个问题,为保障 MySQL 数据库安全,MySQL 要求只有登录到具体服务器才能看到慢查询日志详情,这直接影响到对异常出现时的处理效率,拖累异常地位、分析和解决的进度。

除开启系统自带的慢日志之外,还有什么有效的方式能让开发人员快速、直接且准确地解决这个问题?


使用 MySQL 慢日志分析工具

常用的对慢 SQL 做优化的分析工具有:mysqldumpslow、mysqlsla、mysql-explain-slow-log、mysql-log-filter、myprofi。

这里以 mysqldumpslow 和 mysql-log-filter 为例。


01 mysqldumpslow

mysqldumpslow 是官方提供的慢查询日志分析工具。主要功能包括统计不同慢 sql 的


  • 出现次数(Count)

  • 执行耗费的平均时间和累计总耗费时间(Time)

  • 等待锁耗费的时间(Lock)

  • 发送给客户端的行总数(Rows)

  • 扫描的行总数(Rows)

  • 用户以及 SQL 语句本身(抽象了一下格式,比如 limit 1, 20 用 limit N,N  表示)


可参考:《4.6.9 mysqldumpslow-汇总慢查询日志文件》

https://dev.mysql.com/doc/refman/8.0/en/mysqldumpslow.html


02 mysql-log-filter

google code 上找到的一个分析工具,提供了 python 和 php 两种可执行的脚本。基本功能比官方的 mysqldumpslow 多了查询时间的统计信息(平均、最大、累计),其他类似。特色功能除了统计信息外,针对输出内容做了排版和格式化,保证整体输出的简洁。推荐给喜欢简洁报表的朋友。


可参考:http://code.google.com/p/mysql-log-filter/ 


其他几款工具,这里就不再赘述,有兴趣的朋友可以直接从网上搜一下。上面介绍的这些工具,多多少少会有一些使用上的小问题,要么数据缺失,要么配置麻烦,诸如此类。下面介绍一下一站式数据监测云平台(DataFlux) 的解决方案。


03 DataFlux 方案

如前所述,慢日志具有很大的破坏力,为进一步实现 MySQL 数据库性能优化,我们需要解决如下几个问题:

  • 数据采集

  • 数据解析

  • 数据存储

  • 数据展示以及查询


在 DataFlux 中有专用于各种数据采集的工具——DataKit。针对 MySQL,它提供了各种 MySQL 日志的采集能力。这里我们介绍下 DataKit 采集器在 Linux 平台的基本使用。


首先,我们登录 DataFlux 官网注册并登录会员账号,接着可按照下图(控制台-管理-数据网关),或参考链接 2 找到并安装 DataKit。


参考链接:

  1. DataFlux 官网:https://www.dataflux.cn/

2.《DataKit 安装》:

https://help.dataflux.cn/doc/0c6ebce225784bd2ad994d5f89c5dbc89e025792#toc34



安装好 DataKit 后,在 /usr/local/cloudcare/dataflux/datakit/conf.d/log/ 目录下,复制一份 MySQL 日志采集配置


$ sudo cp mysqlog.conf.sample mysqlog.conf
编辑 mysqlog.conf:
[[inputs.tailf]] # 填写各种 MySQL 日志的文件路径,不同版本可能不同 # 注意,这里只支持文本文件。我们这里使用的版本是 MySQL 5.7.33 logfiles = [ "/var/lib/mysql/*.log", "/var/log/mysql/mysql.log", "/var/log/mysql/error.log", ] source = "mysqlog" # 指定服务名 service = "mysqlog" # 专用的日志解析脚本(DataKit 已经内置了) pipeline = "mysql.p" [inputs.tailf.tags] # 这里可以添加一些标签,比如: biz = "订单系统" # 省略其它默认配置...
复制代码

至此,MySQL 的日志采集就配置好了,重新启动一下 DataKit 的即可(数据需要稍等一会才能在 Dataflux 平台看到)


参考链接:《DataKit 不同系统的重启方式》

https://help.dataflux.cn/doc/0c6ebce225784bd2ad994d5f89c5dbc89e025792#toc27


接下来,我们就能在 DataFlux 平台看到对应的日志了:



从图中我们可以看到,SQL 的执行时间(query_time)已经提取出来了,就是上文慢日志中看到的时间。沿着这条日志,点进去,即可看到日志详情:


从日志详情图中,我们可以看到红框标记的慢查询 SQL 语句,另外还有其它提取出来的日志信息,比如查询时间、来源、服务器主机名、请求发送的数据行数等信息。


除此之外,我们在拉出来的日志详情中,还可看到当前这台主机在慢日志产生的那个时间点附近(红色虚竖线)的资源占用情况(诸如 CPU、内存、磁盘、网络等信息),在一定程度上能帮助开发人员更好的解决问题。


至此,我们解决了 MySQL 慢日志的采集、解析以及展示问题。现在数据已经有了,开发人员就能方便的在网页上找到对应的慢查询日志,并且综合 MySQL 服务器的整体资源占用情况,给出更加合理的解决方案。


以上便是今天我们针对 MySQL 慢日志查询问题,提供的几种解决办法。在实际应用过程中,我们还是要多尝试不同维度的解决方案,并结合自身所处行业、业务等特点,挑选适合自己和团队使用的数据库分析工具,保障系统和业务的稳定。


用户头像

守护每一个系统,成就每一个客户 2021.02.08 加入

一站式数据监测云平台

评论

发布
暂无评论
被MySQL慢日志查询搞废了?3分钟教你快速定位慢查询问题!