架构师训练营」第 6 周作业
作业一:
下面两题,至少选做一题
请简述 CAP 原理。
针对 Doris 案例,请用 UML 时序图描述 Doris 临时失效的处理过程(包括判断系统进入临时失效状态,临时失效中的读写过程,失效恢复过程)。
CAP 原理介绍
先简单介绍一下 CAP 原理是什么:
C:Consistency
即一致性,访问所有的节点得到的数据应该是一样的。
注意,这里的一致性指的是强一致性,也就是数据更新完,访问任何节点看到的数据完全一致,要和弱一致性,最终一致性区分开来。
A:Availability
即可用性,所有的节点都保持高可用性。
注意,这里的高可用还包括不能出现延迟,比如如果节点 B 由于等待数据同步而阻塞请求,那么节点 B 就不满足高可用性。
也就是说,任何没有发生故障的服务必须在有限的时间内返回合理的结果集。
P:Partiton tolerence
即分区容忍性,这里的分区是指网络意义上的分区。由于网络是不可靠的,所有节点之间很可能出现无法通讯的情况,在节点不能通信时,要保证系统可以继续正常服务。
CAP 代表什么含义
CAP 理论可以表述为,一个分布式系统最多只能同时满足一致性(Consistency)、可用性(Availability)和分区容忍性(Partition Tolerance)这三项中的两项。
一致性是指“所有节点同时看到相同的数据”,即更新操作成功并返回客户端完成后,所有节点在同一时间的数据完全一致,等同于所有节点拥有数据的最新版本。
可用性是指“任何时候,读写都是成功的”,即服务一直可用,而且是正常响应时间。我们平时会看到一些 IT 公司的对外宣传,比如系统稳定性已经做到 3 个 9、4 个 9,即 99.9%、99.99%,这里的 N 个 9 就是对可用性的一个描述,叫做 SLA,即服务水平协议。比如我们说月度 99.95% 的 SLA,则意味着每个月服务出现故障的时间只能占总时间的 0.05%,如果这个月是 30 天,那么就是 21.6 分钟。
分区容忍性具体是指“当部分节点出现消息丢失或者分区故障的时候,分布式系统仍然能够继续运行”,即系统容忍网络出现分区,并且在遇到某节点或网络分区之间网络不可达的情况下,仍然能够对外提供满足一致性和可用性的服务。
在分布式系统中,由于系统的各层拆分,P 是确定的,CAP 的应用模型就是 CP 架构和 AP 架构。分布式系统所关注的,就是在 Partition Tolerance 的前提下,如何实现更好的 A,和更稳定的 C。
CAP 理论的证明
CAP 理论的证明有多种方式,通过反证的方式是最直观的。反证法来证明 CAP 定理,最早是由 Lynch 提出的,通过一个实际场景,如果 CAP 三者可同时满足,由于允许 P 的存在,则一定存在 Server 之间的丢包,如此则不能保证 C。
首先构造一个单机系统,如上图,Client A 可以发送指令到 Server 并且设置更新 X 的值,Client 1 从 Server 读取该值,在单点情况下,即没有网络分区的情况下,通过简单的事务机制,可以保证 Client 1 读到的始终是最新值,不存在一致性的问题。
我们在系统中增加一组节点,因为允许分区容错,Write 操作可能在 Server 1 上成功,在 Server 2 上失败,这时候对于 Client 1 和 Client 2,就会读取到不一致的值,出现不一致的情况。如果要保持 X 值的一致性,Write 操作必须同时失败, 也就是降低系统的可用性。
可以看到,在分布式系统中,无法同时满足 CAP 定律中的“一致性”、“可用性”和“分区容错性”三者。
在该证明中,对 CAP 的定义进行了更明确的声明:
Consistency,一致性被称为原子对象,任何的读写都应该看起来是“原子“的,或串行的,写后面的读一定能读到前面写的内容,所有的读写请求都好像被全局排序;
Availability,对任何非失败节点都应该在有限时间内给出请求的回应(请求的可终止性);
Partition Tolerance,允许节点之间丢失任意多的消息,当网络分区发生时,节点之间的消息可能会完全丢失。
个人认为,对于大数据的研发人员,CAP 原理还是有必要理解的。理解了 CAP 原理后,再去看一些开源的 NoSql 实现原理也会比较好理解一些
评论 (1 条评论)