缓存与数据库一致性问题深度剖析
前言
本篇文章是我之前系列文章中的一篇,主要讨论了我们在平时的开发过程中,各大系统中都要用到的缓存数据的问题,进一步延伸到数据库和缓存的双写一致性问题,并且给出了所有方案的实现代码方便大家参考。
本篇文章主要内容
数据缓存
- 为何要使用缓存
- 哪类数据适合缓存
- 缓存的利与弊
如何保证缓存和数据库一致性
- 不更新缓存,而是删除缓存
- 先操作缓存,还是先操作数据库
- 非要保证数据库和缓存数据强一致该怎么办
缓存和数据库一致性实战
- 实战:先删除缓存,再更新数据库
- 实战:先更新数据库,再删缓存
- 实战:缓存延时双删
- 实战:删除缓存重试机制
- 实战:读取binlog异步删除缓存
码字不易,只求关注,欢迎关注我的原创技术公众号:后端技术漫谈(二维码见文章底部)
项目源码在这里
https://github.com/qqxx6661/miaosha
数据缓存
在我们实际的业务场景中,一定有很多需要做数据缓存的场景,比如售卖商品的页面,包括了许多并发访问量很大的数据,它们可以称作是是“热点”数据,这些数据有一个特点,就是更新频率低,读取频率高,这些数据应该尽量被缓存,从而减少请求打到数据库上的机会,减轻数据库的压力。
为何要使用缓存
缓存是为了追求“快”而存在的。我们用代码举一个例子。
我在自己的Demo代码仓库中增加了两个查询库存的接口getStockByDB和getStockByCache,分别表示从数据库和缓存查询某商品的库存量。
随后我们用JMeter进行并发请求测试。(JMeter的使用请参考我之前写的文章:点击这里)
需要声明的是,我的测试并不严谨,只是作对比测试,不要作为实际服务性能的参考。
这是两个接口的代码:
首先设置为10000个并发请求的情况下,运行JMeter,结果首先出现了大量的报错,10000个请求中98%的请求都直接失败了。让人很慌张~
打开日志,报错如下:
SpringBoot内置的Tomcat最大并发数搞的鬼,其默认值为200,对于10000的并发,单机服务实在是力不从心。当然,你可以修改这里的并发数设置,但是你的小机器仍然可能会扛不住。
将其修改为如下配置后,我的小机器才在通过缓存拿库存的情况下,保证了10000个并发的100%返回请求:
可以看到,不使用缓存的情况下,吞吐量为668个请求每秒:
使用缓存的情况下,吞吐量为2177个请求每秒:
在这种“十分不严谨”的对比下,有缓存对于一台单机,性能提升了3倍多,如果在多台机器,更多并发的情况下,由于数据库有了更大的压力,缓存的性能优势应该会更加明显。
测完了这个小实验,我看了眼我挂着MySql的小水管腾讯云服务器,生怕他被这么高流量搞挂。这种突发的流量,指不定会被检测为异常攻击流量呢~
我用的是腾讯云服务器1C4G2M,活动买的,很便宜。这里打个免费的广告,请腾讯云看到后联系我给我打钱 ;)
哪类数据适合缓存
缓存量大但又不常变化的数据,比如详情,评论等。对于那些经常变化的数据,其实并不适合缓存,一方面会增加系统的复杂性(缓存的更新,缓存脏数据),另一方面也给系统带来一定的不稳定性(缓存系统的维护)。
但一些极端情况下,你需要将一些会变动的数据进行缓存,比如想要页面显示准实时的库存数,或者其他一些特殊业务场景。这时候你需要保证缓存不能(一直)有脏数据,这就需要再深入讨论一下。
缓存的利与弊
我们到底该不该上缓存的,这其实也是个trade-off(权衡)的问题。
上缓存的优点:
能够缩短服务的响应时间,给用户带来更好的体验。
能够增大系统的吞吐量,依然能够提升用户体验。
减轻数据库的压力,防止高峰期数据库被压垮,导致整个线上服务BOOM!
上了缓存,也会引入很多额外的问题:
缓存有多种选型,是内存缓存,memcached还是redis,你是否都熟悉,如果不熟悉,无疑增加了维护的难度(本来是个纯洁的数据库系统)。
缓存系统也要考虑分布式,比如redis的分布式缓存还会有很多坑,无疑增加了系统的复杂性。
在特殊场景下,如果对缓存的准确性有非常高的要求,就必须考虑缓存和数据库的一致性问题。
本文想要重点讨论的,就是缓存和数据库的一致性问题,各位看官且往下看。
如何保证缓存和数据库一致性
说了这么多缓存的必要性,那么使用缓存是不是就是一个很简单的事情了呢,我之前也一直是这么觉得的,直到遇到了需要缓存与数据库保持强一致的场景,才知道让数据库数据和缓存数据保持一致性是一门很高深的学问。
从远古的硬件缓存,操作系统缓存开始,缓存就是一门独特的学问。这个问题也被业界探讨了非常久,争论至今。我翻阅了很多资料,发现其实这是一个权衡的问题。值得好好讲讲。
以下的讨论会引入几方观点,我会跟着观点来写代码验证所提到的问题。
不更新缓存,而是删除缓存
大部分观点认为,做缓存不应该是去更新缓存,而是应该删除缓存,然后由下个请求去去缓存,发现不存在后再读取数据库,写入缓存。
观点引用:《分布式之数据库和缓存双写一致性方案解析》孤独烟
原因一:线程安全角度
同时有请求A和请求B进行更新操作,那么会出现
(1)线程A更新了数据库
>
(2)线程B更新了数据库
>
(3)线程B更新了缓存
>
(4)线程A更新了缓存
这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。这就导致了脏数据,因此不考虑。
原因二:业务场景角度
有如下两点:
(1)如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。
(2)如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。
其实如果业务非常简单,只是去数据库拿一个值,写入缓存,那么更新缓存也是可以的。但是,淘汰缓存操作简单,并且带来的副作用只是增加了一次cache miss,建议作为通用的处理方式。
先操作缓存,还是先操作数据库
那么问题就来了,我们是先删除缓存,然后再更新数据库,还是先更新数据库,再删缓存呢?
先来看看大佬们怎么说。
《【58沈剑架构系列】缓存架构设计细节二三事》58沈剑:
对于一个不能保证事务性的操作,一定涉及“哪个任务先做,哪个任务后做”的问题,解决这个问题的方向是:如果出现不一致,谁先做对业务的影响较小,就谁先执行。
假设先淘汰缓存,再写数据库:第一步淘汰缓存成功,第二步写数据库失败,则只会引发一次Cache miss。
>
假设先写数据库,再淘汰缓存:第一步写数据库操作成功,第二步淘汰缓存失败,则会出现DB中是新数据,Cache中是旧数据,数据不一致。
沈剑老师说的没有问题,不过没完全考虑好并发请求时的数据脏读问题,让我们再来看看孤独烟老师《分布式之数据库和缓存双写一致性方案解析》:
先删缓存,再更新数据库
>
该方案会导致请求数据不一致
>
同时有一个请求A进行更新操作,另一个请求B进行查询操作。那么会出现如下情形:
>
(1)请求A进行写操作,删除缓存
>
(2)请求B查询发现缓存不存在
>
(3)请求B去数据库查询得到旧值
>
(4)请求B将旧值写入缓存
>
(5)请求A将新值写入数据库
>
上述情况就会导致不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。
所以先删缓存,再更新数据库并不是一劳永逸的解决方案,再看看先更新数据库,再删缓存这种方案怎么样?
先更新数据库,再删缓存这种情况不存在并发问题么?
>
不是的。假设这会有两个请求,一个请求A做查询操作,一个请求B做更新操作,那么会有如下情形产生
>
(1)缓存刚好失效
>
(2)请求A查询数据库,得一个旧值
>
(3)请求B将新值写入数据库
>
(4)请求B删除缓存
>
(5)请求A将查到的旧值写入缓存
>
ok,如果发生上述情况,确实是会发生脏数据。
>
然而,发生这种情况的概率又有多少呢?
>
发生上述情况有一个先天性条件,就是步骤(3)的写数据库操作比步骤(2)的读数据库操作耗时更短,才有可能使得步骤(4)先于步骤(5)。可是,大家想想,数据库的读操作的速度远快于写操作的(不然做读写分离干嘛,做读写分离的意义就是因为读操作比较快,耗资源少),因此步骤(3)耗时比步骤(2)更短,这一情形很难出现。
先更新数据库,再删缓存依然会有问题,不过,问题出现的可能性会因为上面说的原因,变得比较低!
所以,如果你想实现基础的缓存数据库双写一致的逻辑,那么在大多数情况下,在不想做过多设计,增加太大工作量的情况下,请先更新数据库,再删缓存!
我非要数据库和缓存数据强一致怎么办
那么,如果我非要保证绝对一致性怎么办,先给出结论:
没有办法做到绝对的一致性,这是由CAP理论决定的,缓存系统适用的场景就是非强一致性的场景,所以它属于CAP中的AP。
所以,我们得委曲求全,可以去做到BASE理论中说的最终一致性。
最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性
大佬们给出了到达最终一致性的解决思路,主要是针对上面两种双写策略(先删缓存,再更新数据库/先更新数据库,再删缓存)导致的脏数据问题,进行相应的处理,来保证最终一致性。
缓存延时双删
问:先删除缓存,再更新数据库中避免脏数据?
答案:采用延时双删策略。
上文我们提到,在先删除缓存,再更新数据库的情况下,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。
那么延时双删怎么解决这个问题呢?
(1)先淘汰缓存
>
(2)再写数据库(这两步和原来一样)
>
(3)休眠1秒,再次淘汰缓存
>
这么做,可以将1秒内所造成的缓存脏数据,再次删除。
那么,这个1秒怎么确定的,具体该休眠多久呢?
针对上面的情形,读者应该自行评估自己的项目的读数据业务逻辑的耗时。然后写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百ms即可。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。
如果你用了mysql的读写分离架构怎么办?
ok,在这种情况下,造成数据不一致的原因如下,还是两个请求,一个请求A进行更新操作,另一个请求B进行查询操作。
>
(1)请求A进行写操作,删除缓存
>
(2)请求A将数据写入数据库了,
>
(3)请求B查询缓存发现,缓存没有值
>
(4)请求B去从库查询,这时,还没有完成主从同步,因此查询到的是旧值
>
(5)请求B将旧值写入缓存
>
(6)数据库完成主从同步,从库变为新值
>
上述情形,就是数据不一致的原因。还是使用双删延时策略。只是,睡眠时间修改为在主从同步的延时时间基础上,加几百ms。
采用这种同步淘汰策略,吞吐量降低怎么办?
ok,那就将第二次删除作为异步的。自己起一个线程,异步删除。这样,写的请求就不用沉睡一段时间后了,再返回。这么做,加大吞吐量。
所以在先删除缓存,再更新数据库的情况下,可以使用延时双删的策略,来保证脏数据只会存活一段时间,就会被准确的数据覆盖。
在先更新数据库,再删缓存的情况下,缓存出现脏数据的情况虽然可能性极小,但也会出现。我们依然可以用延时双删策略,在请求A对缓存写入了脏的旧值之后,再次删除缓存。来保证去掉脏缓存。
删缓存失败了怎么办:重试机制
看似问题都已经解决了,但其实,还有一个问题没有考虑到,那就是删除缓存的操作,失败了怎么办?比如延时双删的时候,第二次缓存删除失败了,那不还是没有清除脏数据吗?
解决方案就是再加上一个重试机制,保证删除缓存成功。
参考孤独烟老师给的方案图:
方案一:
流程如下所示
>
(1)更新数据库数据;
>
(2)缓存因为种种问题删除失败
>
(3)将需要删除的key发送至消息队列
>
(4)自己消费消息,获得需要删除的key
>
(5)继续重试删除操作,直到成功
>
然而,该方案有一个缺点,对业务线代码造成大量的侵入。于是有了方案二,在方案二中,启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。
方案二:
流程如下图所示:
>
(1)更新数据库数据
>
(2)数据库会将操作信息写入binlog日志当中
>
(3)订阅程序提取出所需要的数据以及key
>
(4)另起一段非业务代码,获得该信息
>
(5)尝试删除缓存操作,发现删除失败
>
(6)将这些信息发送至消息队列
>
(7)重新从消息队列中获得该数据,重试操作。
而读取binlog的中间件,可以采用阿里开源的canal
好了,到这里我们已经把缓存双写一致性的思路彻底梳理了一遍,下面就是我对这几种思路徒手写的实战代码,方便有需要的朋友参考。
缓存和数据库一致性实战
实战:先删除缓存,再更新数据库
终于到了实战,我们在秒杀项目的代码上增加接口:先删除缓存,再更新数据库
OrderController中新增:
stockService中新增:
其他涉及的代码都在之前三篇文章中有介绍,并且可以直接去Github拿到项目源码,就不在这里重复贴了。
实战:先更新数据库,再删缓存
如果是先更新数据库,再删缓存,那么代码只是在业务顺序上颠倒了一下,这里就只贴OrderController中新增:
实战:缓存延时双删
如何做延时双删呢,最好的方法是开设一个线程池,在线程中删除key,而不是使用Thread.sleep进行等待,这样会阻塞用户的请求。
更新前先删除缓存,然后更新数据,再延时删除缓存。
OrderController中新增接口:
OrderController中新增线程池:
来试验一下,请求接口createOrderWithCacheV3:
日志中,做到了两次删除:
实战:删除缓存重试机制
上文提到了,要解决删除失败的问题,需要用到消息队列,进行删除操作的重试。这里我们为了达到效果,接入了RabbitMq,并且需要在接口中写发送消息,并且需要消费者常驻来消费消息。Spring整合RabbitMq还是比较简单的,我把简单的整合代码也贴出来。
pom.xml新增RabbitMq的依赖:
写一个RabbitMqConfig:
添加一个消费者:
OrderController中新增接口:
访问createOrderWithCacheV4:
可以看到,我们先完成了下单,然后删除了缓存,并且假设延迟删除缓存失败了,发送给消息队列重试的消息,消息队列收到消息后再去删除缓存。
实战:读取binlog异步删除缓存
我们需要用到阿里开源的canal来读取binlog进行缓存的异步删除。
我写了一篇Canal的入门文章,其中用的入门例子就是读取binlog删除缓存。大家可以直接跳转到这里:阿里开源MySQL中间件Canal快速入门
扩展阅读
更新缓存的的Design Pattern有四种:
Cache aside
Read through
Write through
Write behind caching,这里有陈皓的总结文章可以进行学习。
https://coolshell.cn/articles/17416.html
小结
引用陈浩《缓存更新的套路》最后的总结语作为小结:
分布式系统里要么通过2PC或是Paxos协议保证一致性,要么就是拼命的降低并发时脏数据的概率
缓存系统适用的场景就是非强一致性的场景,所以它属于CAP中的AP,BASE理论。
异构数据库本来就没办法强一致,只是尽可能减少时间窗口,达到最终一致性。
还有别忘了设置过期时间,这是个兜底方案
结束语
本文总结并探讨了缓存数据库双写一致性问题。
文章内容大致可以总结为如下几点:
对于读多写少的数据,请使用缓存。
为了保持数据库和缓存的一致性,会导致系统吞吐量的下降。
为了保持数据库和缓存的一致性,会导致业务代码逻辑复杂。
缓存做不到绝对一致性,但可以做到最终一致性。
对于需要保证缓存数据库数据一致的情况,请尽量考虑对一致性到底有多高要求,选定合适的方案,避免过度设计。
作者水平有限,写文章过程中难免出现错误和疏漏,请理性讨论与指正。
码字不易,只求关注,欢迎关注我的原创技术公众号:后端技术漫谈(二维码见文章底部)
参考
https://cloud.tencent.com/developer/article/1574827
https://www.jianshu.com/p/2936a5c65e6b
https://www.cnblogs.com/rjzheng/p/9041659.html
https://www.cnblogs.com/codeon/p/8287563.html
https://www.jianshu.com/p/0275ecca2438
https://www.jianshu.com/p/dc1e5091a0d8
https://coolshell.cn/articles/17416.html
关注我
我是一名后端开发工程师。主要关注后端开发,数据安全,爬虫,物联网,边缘计算等方向,欢迎交流。
各大平台都可以找到我
原创文章主要内容
后端开发实战
Java面试知识
设计模式/数据结构/算法题解
读书笔记/逸闻趣事/程序人生
个人公众号:后端技术漫谈
如果文章对你有帮助,不妨点赞,收藏起来~
版权声明: 本文为 InfoQ 作者【Zhendong】的原创文章。
原文链接:【http://xie.infoq.cn/article/47241d099404a1565e168fad4】。文章转载请联系作者。
评论