Spark Launcher Java API 提交 Spark 算法
在介绍之前,我先附上spark 官方文档地址:http://spark.apache.org/docs/latest/api/java/org/apache/spark/launcher/package-summary.html
源码github地址:https://github.com/yyijun/framework/tree/master/framework-spark
1.主要提交参数说明
spark-submit \ --master yarn \ --deploy-mode cluster \ --driver-memory 4g \ --driver-cores 4 \ --num-executors 20 \ --executor-cores 4 \ --executor-memory 10g \ --class com.yyj.train.spark.launcher.TestSparkLauncher \ --conf spark.yarn.jars=hdfs://hadoop01.xxx.xxx.com:8020/trainsparklauncher/jars/*.jar \ --jars $(ls lib/*.jar| tr '\n' ',') \ lib/ train-spark-1.0.0.jar
--conf spark.yarn.jars:提交算法到yarn集群时算法依赖spark安装包lib目录下的jar包,如果不指定,则每次启动任务都会先上传相关依赖包,耗时严重;
--jars:算法依赖的相关包,spark standalone模式、yarn模式都有用,多个依赖包用逗号”,”分隔;
2.Idea提交算法到yarn集群
2.1.入口参数配置
val spark = SparkSession .builder .appName("TestSparkLauncher") .master("yarn") .config("deploy.mode", "cluster") .config("spark.yarn.jars", "hdfs://hadoop01.xxx.xxx.com:8020/trainsparklauncher/jars/*.jar") .config("spark.sql.warehouse.dir", "/user/hive/warehouse") .enableHiveSupport() .getOrCreate()
2.2.pom.xml配置
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-yarn_2.11</artifactId> <version>2.1.0</version></dependency>
3.提交准备
1、从大数据平台下载hadoop相关的xml配置文件: core-site.xml:必须; hdfs-site.xml:必须; hive-site.xml:提交的算法里面用到spark on hive时需要此文件; yarn-site.xml:提交算法到yarn时必须要此文件;2、准备自己的算法包,这里对应替换为自己的算法包: train-spark-1.0.0.jar和train-common-1.0.0.jar3、上传spark安装目录下jars目录下相关的jar包到hdfs:hadoop fs –put –f /opt/cloudera/parcels/SPARK2/lib/spark2/jars /hdfs目录
测试提交算法
package com.yyj.framework.spark.launcher;import java.io.File;import java.util.HashMap;import java.util.Map;/** * Created by yangyijun on 2019/5/20. * 提交spark算法入口类 */public class SparkLauncherMain { public static void main(String[] args) { System.out.println("starting..."); String confPath = "/Users/yyj/workspace/alg/src/main/resources"; System.out.println("confPath=" + confPath); //开始构建提交spark时依赖的jars String rootPath = "/Users/yyj/workspace/alg/lib/"; File file = new File(rootPath); StringBuilder sb = new StringBuilder(); String[] files = file.list(); for (String s : files) { if (s.endsWith(".jar")) { sb.append("hdfs://hadoop01.xxx.xxx.com:8020/user/alg/jars/"); sb.append(s); sb.append(","); } } String jars = sb.toString(); jars = jars.substring(0, jars.length() - 1); Map<String, String> conf = new HashMap<>(); conf.put(SparkConfig.DEBUG, "false"); conf.put(SparkConfig.APP_RESOURCE, "hdfs://hadoop01.xxx.xxx.com:8020/user/alg/jars/alg-gs-offline-1.0.0.jar"); conf.put(SparkConfig.MAIN_CLASS, "com.yyj.alg.gs.offline.StartGraphSearchTest"); conf.put(SparkConfig.MASTER, "yarn"); //如果是提交到spark的standalone集群则采用下面的master //conf.put(SparkConfig.MASTER, "spark://hadoop01.xxx.xxx.com:7077"); conf.put(SparkConfig.APP_NAME, "offline-graph-search"); conf.put(SparkConfig.DEPLOY_MODE, "client"); conf.put(SparkConfig.JARS, jars); conf.put(SparkConfig.HADOOP_CONF_DIR, confPath); conf.put(SparkConfig.YARN_CONF_DIR, confPath); conf.put(SparkConfig.SPARK_HOME, "/Users/yyj/spark2"); conf.put(SparkConfig.DRIVER_MEMORY, "2g"); conf.put(SparkConfig.EXECUTOR_CORES, "2"); conf.put(SparkConfig.EXECUTOR_MEMORY, "2g"); conf.put(SparkConfig.SPARK_YARN_JARS, "hdfs://hadoop01.xxx.xxx.com:8020/user/alg/jars/*.jar"); conf.put(SparkConfig.APP_ARGS, "params"); SparkActionLauncher launcher = new SparkActionLauncher(conf); boolean result = launcher.waitForCompletion(); System.out.println("============result=" + result); }}
构造SparkLauncher对象,配置Spark提交算法相关参数及说明
private SparkLauncher createSparkLauncher() { logger.info("actionConfig:\n" + JSON.toJSONString(conf, true)); this.debug = Boolean.parseBoolean(conf.get(SparkConfig.DEBUG)); Map<String, String> env = new HashMap<>(); //配置hadoop的xml文件本地路径 env.put(SparkConfig.HADOOP_CONF_DIR, conf.get(SparkConfig.HADOOP_CONF_DIR)); //配置yarn的xml文件本地路径 env.put(SparkConfig.YARN_CONF_DIR, conf.get(SparkConfig.HADOOP_CONF_DIR)); SparkLauncher launcher = new SparkLauncher(env); //设置算法入口类所在的jar包本地路径 launcher.setAppResource(conf.get(SparkConfig.APP_RESOURCE)); //设置算法入口类保证包名称及类名,例:com.yyj.train.spark.launcher.TestSparkLauncher launcher.setMainClass(conf.get(SparkConfig.MAIN_CLASS)); //设置集群的master地址:yarn/spark standalone的master地址,例:spark://hadoop01.xxx.xxx.com:7077 launcher.setMaster(conf.get(SparkConfig.MASTER)); //设置部署模式:cluster(集群模式)/client(客户端模式) launcher.setDeployMode(conf.get(SparkConfig.DEPLOY_MODE)); //设置算法依赖的包的本地路径,多个jar包用逗号","隔开,如果是spark on yarn只需要把核心算法包放这里即可, // spark相关的依赖包可以预先上传到hdfs并通过 spark.yarn.jars参数指定; // 如果是spark standalone则需要把所有依赖的jar全部放在这里 launcher.addJar(conf.get(SparkConfig.JARS)); //设置应用的名称 launcher.setAppName(conf.get(SparkConfig.APP_NAME)); //设置spark客户端安装包的home目录,提交算法时需要借助bin目录下的spark-submit脚本 launcher.setSparkHome(conf.get(SparkConfig.SPARK_HOME)); //driver的内存设置 launcher.addSparkArg(SparkConfig.DRIVER_MEMORY, conf.getOrDefault(SparkConfig.DRIVER_MEMORY, "4g")); //driver的CPU核数设置 launcher.addSparkArg(SparkConfig.DRIVER_CORES, conf.getOrDefault(SparkConfig.DRIVER_CORES, "2")); //启动executor个数 launcher.addSparkArg(SparkConfig.NUM_EXECUTOR, conf.getOrDefault(SparkConfig.NUM_EXECUTOR, "30")); //每个executor的CPU核数 launcher.addSparkArg(SparkConfig.EXECUTOR_CORES, conf.getOrDefault(SparkConfig.EXECUTOR_CORES, "4")); //每个executor的内存大小 launcher.addSparkArg(SparkConfig.EXECUTOR_MEMORY, conf.getOrDefault(SparkConfig.EXECUTOR_MEMORY, "4g")); String sparkYarnJars = conf.get(SparkConfig.SPARK_YARN_JARS); if (StringUtils.isNotBlank(sparkYarnJars)) { //如果是yarn的cluster模式需要通过此参数指定算法所有依赖包在hdfs上的路径 launcher.setConf(SparkConfig.SPARK_YARN_JARS, conf.get(SparkConfig.SPARK_YARN_JARS)); } //设置算法入口参数 launcher.addAppArgs(new String[]{conf.get(SparkConfig.APP_ARGS)}); return launcher; }
准spark安装包,用于提交spark算法的客户端,因为提交算法的时候需要用到Spark的home目录下的bin/spark-submit脚本
重命名conf目录下的spark-env.sh脚本,否则会包如下的错误。原因是spark-env.sh里面配置了大数据平台上的路径,而在提交算法的客户端机器没有对应路径
debug模式提交或者非debug模式
/** * Submit spark application to hadoop cluster and wait for completion. * * @return */ public boolean waitForCompletion() { boolean success = false; try { SparkLauncher launcher = this.createSparkLauncher(); if (debug) { Process process = launcher.launch(); // Get Spark driver log new Thread(new ISRRunnable(process.getErrorStream())).start(); new Thread(new ISRRunnable(process.getInputStream())).start(); int exitCode = process.waitFor(); System.out.println(exitCode); success = exitCode == 0 ? true : false; } else { appMonitor = launcher.setVerbose(true).startApplication(); success = applicationMonitor(); } } catch (Exception e) { logger.error(e); } return success; }
非debug模式提交时,控制台获取处理结果信息
/////////////////////// // private functions /////////////////////// private boolean applicationMonitor() { appMonitor.addListener(new SparkAppHandle.Listener() { @Override public void stateChanged(SparkAppHandle handle) { logger.info("****************************"); logger.info("State Changed [state={0}]", handle.getState()); logger.info("AppId={0}", handle.getAppId()); } @Override public void infoChanged(SparkAppHandle handle) { } }); while (!isCompleted(appMonitor.getState())) { try { Thread.sleep(3000L); } catch (InterruptedException e) { e.printStackTrace(); } } boolean success = appMonitor.getState() == SparkAppHandle.State.FINISHED; return success; } private boolean isCompleted(SparkAppHandle.State state) { switch (state) { case FINISHED: return true; case FAILED: return true; case KILLED: return true; case LOST: return true; } return false; }
可以从处理结果中获取到app ID,用于杀掉yarn任务时使用
4.任务详情
//访问URL:http://<rm http address:port>/ws/v1/cluster/apps/{appID}//例子http://localhost:8088/ws/v1/cluster/apps/application15617064805542301
访问详情地址,返回数据格式如下:
响应数据字段说明:
"id": "application15617064805542301",--任务ID"user": "haizhi",--提交任务的用户名称"name": "TestSparkLauncher",--应用名称"queue": "root.users.haizhi",--提交队列"state": "FINISHED",--任务状态"finalStatus": "SUCCEEDED",--最终状态"progress": 100,--任务进度"trackingUI": "History","trackingUrl": "http://hadoop01.xx.xxx.com:18088/proxy/application15617064805542301/A","diagnostics":"",--任务出错时的主要错误信息"clusterId": 1561706480554,"applicationType": "SPARK",--任务类型"startedTime": 1562808570464,--任务开始时间,单位毫秒"finishedTime": 1562808621348,--任务结束时间,单位毫秒"elapsedTime": 50884,--任务耗时,毫秒"amContainerLogs": "http://hadoop01.xx.xxx.com:8042/node/containerlogs/container15617064805542301_01_000001/haizhi",--任务详细日志"amHostHttpAddress": "hadoop01.xx.xxx.com:8042","memorySeconds": 198648,--任务分配到的内存数,单位MB"vcoreSeconds": 145,--任务分配到的CPU核数"logAggregationStatus": "SUCCEEDED"
5.rest API杀掉任务请求格式:
请求URL:http://<rm http address:port>/ws/v1/cluster/apps/{appid}/state
请求方式:put
请求参数: { "state": "KILLED" }
例:
请求URL:http://192.168.1.3:18088/ws/v1/cluster/apps/application15617064805542302/state请求方式:put请求参数: { "state": "KILLED" }
版权声明: 本文为 InfoQ 作者【杨仪军】的原创文章。
原文链接:【http://xie.infoq.cn/article/3d84053a4e17c468f0b546ef5】。文章转载请联系作者。
杨仪军
学海无涯 2020.03.29 加入
还未添加个人简介
评论