文章首发公众号:Java 架构师联盟,每日更新技术好文
背压
本节首先介绍什么是背压(Backpressure)问题,然后介绍背压问题的几种应对模式。
什么是背压问题
当上下游的流操作处于不同的线程时,如果上游弹射数据的速度快于下游接收处理数据的速度,对于那些没来得及处理的数据就会造成积压,这些数据既不会丢失,又不会被垃圾回收机制回收,而是存放在一个异步缓存池中,如果缓存池中的数据一直得不到处理,越积越多,最后就会造成内存溢出,这便是响应式编程中的背压问题。
一个存在背压问题的演示实例代码如下:
package com.crazymaker.demo.rxJava.basic;
//省略import
@Slf4j
public class BackpressureDemo {
/**
*演示不使用背压
*/
@Test
public void testNoBackpressure() throws InterruptedException {
//被观察者(主题)
Observable observable = Observable.create(
new Observable.OnSubscribe<String>() {
@Override
public void call(Subscriber<? super String> subscriber) {
//循环10次
for (int i = 0;i<10 ; i++) {
log.info("produce ->" + i);
subscriber.onNext(String.valueOf(i));
}
}
});
//观察者
Action1<String> subscriber = new Action1<String>() {
public void call(String s){
try {
//每消费一次间隔50毫秒
Thread.sleep(50);
} catch (InterruptedException e) {
e.printStackTrace();
}
log.info("consumer ->" + s);
}
};
//订阅:observable与subscriber之间依然通过subscribe()进行关联
observable
.subscribeOn(Schedulers.io())
.observeOn(Schedulers.newThread())
.subscribe(subscriber);
Thread.sleep(Integer.MAX_VALUE);
}
}
复制代码
在实例代码中,observable 发射操作执行在一条通过 Schedulers.io()调度器获取的 IO 线程上,而观察者 subscriber 的消费操作执行在另一条通过 Schedulers.newThread()调度器获取的新线程上。observable 流不断发送数据,累积发送 10 次;观察者 subscriber 每隔 50 毫秒接收一条数据。
运行上面的演示程序后,输出的结果如下:
17:56:17.719 [RxIoScheduler-2] INFO c.c.d.r.b.BackpressureDemo - produce ->0
17:56:17.723 [RxIoScheduler-2] INFO c.c.d.r.b.BackpressureDemo - produce ->1
17:56:17.723 [RxIoScheduler-2] INFO c.c.d.r.b.BackpressureDemo - produce ->2
17:56:17.723 [RxIoScheduler-2] INFO c.c.d.r.b.BackpressureDemo - produce ->3
17:56:17.723 [RxIoScheduler-2] INFO c.c.d.r.b.BackpressureDemo - produce ->4
17:56:17.723 [RxIoScheduler-2] INFO c.c.d.r.b.BackpressureDemo - produce ->5
17:56:17.723 [RxIoScheduler-2] INFO c.c.d.r.b.BackpressureDemo - produce ->6
17:56:17.723 [RxIoScheduler-2] INFO c.c.d.r.b.BackpressureDemo - produce ->7
17:56:17.723 [RxIoScheduler-2] INFO c.c.d.r.b.BackpressureDemo - produce ->8
17:56:17.723 [RxIoScheduler-2] INFO c.c.d.r.b.BackpressureDemo - produce ->9
17:56:17.774 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->0
17:56:17.824 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->1
17:56:17.875 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->2
17:56:17.925 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->3
17:56:17.976 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->4
17:56:18.027 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->5
17:56:18.078 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->6
17:56:18.129 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->7
17:56:18.179 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->8
17:56:18.230 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->9
复制代码
上面的程序有一个特点:生产者 observable 弹射数据的速度大于下游消费者 subscriber 接收处理数据的速度,但是由于数据量小,因此上面的程序运行起来没有出现问题。
简单修改一下生产者,将原来的弹射 10 条改成无限制地弹射,代码如下:
//被观察者(主题)
Observable observable = Observable.create(
new Observable.OnSubscribe<String>() {
@Override
public void call(Subscriber<? super String> subscriber) {
//无限制地循环
for (int i = 0; ; i++) {
//log.info("produce ->" + i); subscriber.onNext(String.valueOf(i));
}
}
});
复制代码
再次运行该演示程序后,抛出的异常如下:
Caused by: rx.exceptions.MissingBackpressureException
at rx.internal.operators.OperatorObserveOn$ObserveOnSubscriber.onNext
(OperatorObserveOn.java:160)
at rx.internal.operators.OperatorSubscribeOn$SubscribeOnSubscriber.onNext
(OperatorSubscribeOn.java:74)
at com.crazymaker.demo.rxJava.basic.BackpressureDemo$1.call
(BackpressureDemo.java:24)
at com.crazymaker.demo.rxJava.basic.BackpressureDemo$1.call
(BackpressureDemo.java:19)
at rx.Observable.unsafeSubscribe(Observable.java:10327)
at rx.internal.operators.OperatorSubscribeOn$SubscribeOnSubscriber.call
(OperatorSubscribeOn.java:100)
at rx.internal.schedulers.CachedThreadScheduler$EventLoopWorker$1.call
(CachedThreadScheduler.java:230)
... 9 more
复制代码
异常原因:由于上游 observable 流弹射数据的速度远远大于下游通过 subscriber 接收的速度,导致 observable 用于暂存弹射数据的队列空间耗尽,造成上游数据积压。
背压问题的几种应对模式
如何应对背压问题呢?在创建主题时可以使用 Observable 类的一个重载的 create 方法设置具体的背压模式,该方法的源代码如下:
public static <T> Observable<T> create(Action1<Emitter<T>> emitter, Emitter.BackpressureMode backpressure) {
return unsafeCreate(new OnSubscribeCreate<T>(emitter, backpressure));
}
复制代码
此方法的第二个参数用于指定一种背压模式。背压模式有多种,比较常用的有“最近模式”Emitter.BackpressureMode.LATEST。这种模式的含义为:如果消费跟不上,那么仅仅缓存最近弹射出来的数据,将老旧一点的数据直接丢弃。
使用“最近模式”背压,改写 4.8.1 节的测试用例,代码如下:
/**
*演示使用“最近模式”背压
*/
@Test
public void testBackpressure() throws InterruptedException {
//主题实例,使用背压
Observable observable = Observable.create(
new Action1<Emitter<String>> () {
@Override
public void call(Emitter<String> emitter) {
//无限循环
for (int i = 0; ; i++) {
//log.info("produce ->" + i);
emitter.onNext(String.valueOf(i));
}
}
}, Emitter.BackpressureMode.LATEST);
//订阅者(观察者)
Action1<String> subscriber = new Action1<String>() {
public void call(String s) {
try {
//每消费一次间隔50毫秒
Thread.sleep(3);
} catch (InterruptedException e) {
e.printStackTrace();
}
log.info("consumer ->" + s);
}
};
//订阅: observable与subscriber之间依然通过subscribe()进行关联
observable
.subscribeOn(Schedulers.io())
.observeOn(Schedulers.newThread())
.subscribe(subscriber);
Thread.sleep(Integer.MAX_VALUE);
}
复制代码
运行这个演示程序,部分输出的结果节选如下:
18:51:54.736 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->0
18:51:54.745 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->1
//省略部分输出
18:51:55.217 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->123
18:51:55.220 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->124
18:51:55.224 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->125
18:51:55.228 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->126
18:51:55.232 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->127
18:51:55.236 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->7337652
18:51:55.240 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->7337653
18:51:55.244 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->7337654
//省略部分输出
18:51:55.595 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->7337747
18:51:55.598 [RxNewThreadScheduler-1] INFO c.c.d.r.b.BackpressureDemo - consumer ->14161628
复制代码
从输出的结果可以看到,上游主题连续不断地弹射,下游订阅者在接收完 127 后直接跳到了 7337652,其间弹射出来的几百万数据(相对旧一点的数据)就直接被丢弃了。
除了 Emitter.BackpressureMode.LATEST“最近模式”外,RxJava 在 Emitter<T>接口中通过一个枚举常量定义了以下几种背压模式:
enum BackpressureMode {
/**
*No backpressure is applied(无背压模式)
*可能导致rx.exceptions.MissingBackpressureException异常
*或者IllegalStateException异常
*/
NONE,
/**
*如果消费者跟不上,就抛出rx.exceptions.MissingBackpressureException异常
*/
ERROR,
/**
*缓存所有的onNext方法弹射出来的消息,等待消费者慢慢地消费
*/
BUFFER,
/**
*如果下游消费跟不上,就丢弃onNext方法弹射出来的新消息
*/
DROP,
/**
*如果消费者跟不上,就丢掉旧的消息,缓存onNext方法弹射出来的新消息
*/
LATEST
}
复制代码
对于以上 RxJava 背压模式,介绍如下:
(1)BackpressureMode.DROP:在这种模式下,Observable 主题使用固定大小为 128 的缓冲区。如果下游订阅者无法处理,流的第一个元素就会缓存下来,后续的会被丢弃。
(2)BackpressureMode.LATEST:这种模式与 BackpressureMode.DROP 类似,并且 Observable 主题也使用固定大小为 128 的缓冲区。BackpressureMode.LATEST 的缓存策略不同,使用最新的弹出元素替换缓冲区缓存的元素。当消费者可以处理下一个元素时,它收到的是 Observable 最近一次弹出的元素。
(3)BackpressureMode.NONE 和 BackpressureMode.ERROR:在这两种模式中发送的数据不使用背压。如果上游 observable 主题弹射数据的速度大于下游通过 subscriber 接收的速度,造成上游数据积压,就会抛出 MissingBackpressureException 异常。
(4)BackpressureMode.BUFFER:在这种模式下,有一个无限的缓冲区(初始化时是 128),下游消费不了的元素全部会放到缓冲区中。如果缓冲区中持续地积累,就会导致内存耗尽,抛出 OutOfMemoryException 异常。
本文给大家讲解的内容是 SpringCloudRPC 远程调用核心原理: RxJava 响应式编程框架,背压问题的几种应对模式
下篇文章给大家讲解的是 SpringCloudRPC 远程调用核心原理:Hystrix RPC 保护的原理;
觉得文章不错的朋友可以转发此文关注小编;
感谢大家的支持!
评论