JAVA 集合之 ConcurrentHashMap
JAVA集合之ConcurrentHashMap
##ConcurrentHashMap加锁原理
jdk1.8以前多个数组,分段加锁,一个数组一个锁
jdk1.8及以后优化细粒度,一个数组,每个元素进行CAS,如果失败说明有人了,此时synchronized对数组元素加锁,链表+红黑树处理,对数组每个元素加锁
##ConcurrentHashMap使用场景
多个线程要访问同一个数据,synchronized加锁,CAS去进行安全的累加,去实现多线程场景下的安全的更新一个数据的效果,比较多的一个场景下,可能就是多个线程同时读写一个HashMap
##ConcurrentHashMap出现的原因
多线程环境下,读写HashMap 会产生线程安全的问题,同时如果手动加锁synchronized,性能不好
eg.
Map map = new HashMap();
synchronized(map){
//业务逻辑
}
如果这样我们手动加锁的话,也能实现线程安全,但是如果我们多个线程的写操作同时对map.put() =数组[1],map.put() =数组[2],map.put() =数组[5],等几个不一样位置的数组进行操作的话,因为锁的原因会互相影响,大大的影响了性能,实际他们并无关联性所以不需要加锁,这时候ConcurrentHashMap出现来优化这种情况。
##ConcurrentHashMap的特性
程序运行时能够同时更新 ConccurentHashMap 且不产生锁竞争的最大线程数。默认为 16,ConcurrentHashMap 会使用大于等于该值的最小2幂指数作为实际并发度(假如用户设置并发度为17,实际并发度则为32)。
天生线程安全。
每个线程put的时候采用cas策略保持线程安全,如果发现有竞争,cas失败,锁升级为synchronized对当前操作元素加锁。
##ConcurrentHashMap重要参数
##ConcurrentHashMap重要方法解读
三个核心方法
初始化方法
扩容方法transfer
当ConcurrentHashMap容量不足的时候,需要对table进行扩容。这个方法的基本思想跟HashMap是很像的,但是由于它是支持并发扩容的,所以要复杂的多。原因是它支持多线程进行扩容操作,而并没有加锁。我想这样做的目的不仅仅是为了满足concurrent的要求,而是希望利用并发处理去减少扩容带来的时间影响。因为在扩容的时候,总是会涉及到从一个“数组”到另一个“数组”拷贝的操作,如果这个操作能够并发进行,那真真是极好的了。
整个扩容操作分为两个部分
第一部分是构建一个nextTable,它的容量是原来的两倍,这个操作是单线程完成的。这个单线程的保证是通过RESIZESTAMPSHIFT这个常量经过一次运算来保证的,这个地方在后面会有提到;
第二个部分就是将原来table中的元素复制到nextTable中,这里允许多线程进行操作。
先来看一下单线程是如何完成的:
它的大体思想就是遍历、复制的过程。首先根据运算得到需要遍历的次数i,然后利用tabAt方法获得i位置的元素:
如果这个位置为空,就在原table中的i位置放入forwardNode节点,这个也是触发并发扩容的关键点;
如果这个位置是Node节点(fh>=0),如果它是一个链表的头节点,就构造一个反序链表,把他们分别放在nextTable的i和i+n的位置上
如果这个位置是TreeBin节点(fh<0),也做一个反序处理,并且判断是否需要untreefi,把处理的结果分别放在nextTable的i和i+n的位置上
遍历过所有的节点以后就完成了复制工作,这时让nextTable作为新的table,并且更新sizeCtl为新容量的0.75倍 ,完成扩容。
再看一下多线程是如何完成的:
在代码上有一个判断,如果遍历到的节点是forward节点,就向后继续遍历,再加上给节点上锁的机制,就完成了多线程的控制。多线程遍历节点,处理了一个节点,就把对应点的值set为forward,另一个线程看到forward,就向后遍历。这样交叉就完成了复制工作。而且还很好的解决了线程安全的问题。
Put方法
前面的所有的介绍其实都为这个方法做铺垫。ConcurrentHashMap最常用的就是put和get两个方法。现在来介绍put方法,这个put方法依然沿用HashMap的put方法的思想,根据hash值计算这个新插入的点在table中的位置i,如果i位置是空的,直接放进去,否则进行判断,如果i位置是树节点,按照树的方式插入新的节点,否则把i插入到链表的末尾。ConcurrentHashMap中依然沿用这个思想,有一个最重要的不同点就是ConcurrentHashMap不允许key或value为null值。另外由于涉及到多线程,put方法就要复杂一点。在多线程中可能有以下两个情况
如果一个或多个线程正在对ConcurrentHashMap进行扩容操作,当前线程也要进入扩容的操作中。这个扩容的操作之所以能被检测到,是因为transfer方法中在空结点上插入forward节点,如果检测到需要插入的位置被forward节点占有,就帮助进行扩容;
如果检测到要插入的节点是非空且不是forward节点,就对这个节点加锁,这样就保证了线程安全。尽管这个有一些影响效率,但是还是会比hashTable的synchronized要好得多。
整体流程就是首先定义不允许key或value为null的情况放入 对于每一个放入的值,首先利用spread方法对key的hashcode进行一次hash计算,由此来确定这个值在table中的位置。
如果这个位置是空的,那么直接放入,而且不需要加锁操作。
如果这个位置存在结点,说明发生了hash碰撞,首先判断这个节点的类型。如果是链表节点(fh>0),则得到的结点就是hash值相同的节点组成的链表的头节点。需要依次向后遍历确定这个新加入的值所在位置。如果遇到hash值与key值都与新加入节点是一致的情况,则只需要更新value值即可。否则依次向后遍历,直到链表尾插入这个结点。如果加入这个节点以后链表长度大于8,就把这个链表转换成红黑树。如果这个节点的类型已经是树节点的话,直接调用树节点的插入方法进行插入新的值。
treeifyBin方法
这个方法用于将过长的链表转换为TreeBin对象。但是他并不是直接转换,而是进行一次容量判断,如果容量没有达到转换的要求,直接进行扩容操作并返回;如果满足条件才链表的结构抓换为TreeBin ,这与HashMap不同的是,它并没有把TreeNode直接放入红黑树,而是利用了TreeBin这个小容器来封装所有的TreeNode.
helpTransfer方法
这是一个协助扩容的方法。这个方法被调用的时候,当前ConcurrentHashMap一定已经有了nextTable对象,首先拿到这个nextTable对象,调用transfer方法。回看上面的transfer方法可以看到,当本线程进入扩容方法的时候会直接进入复制阶段
get方法
get方法比较简单,给定一个key来确定value的时候,必须满足两个条件 key相同 hash值相同,对于节点可能在链表或树上的情况,需要分别去查找。
##总结
[一个大的数组],数组里每个元素进行put操作,都是有一个不同的锁,刚开始进行put的时候,如果两个线程都是在数组[5]这个位置进行put,这个时候,对数组[5]这个位置进行put的时候,采取的是CAS的策略
同一个时间,只有一个线程能成功执行这个CAS,就是说他刚开始先获取一下数组[5]这个位置的值,null,然后执行CAS,线程1,比较一下,put进去我的这条数据,同时间,其他的线程执行CAS,都会失败
分段加锁,通过对数组每个元素执行CAS的策略,如果是很多线程对数组里不同的元素执行put,大家是没有关系的,如果其他人失败了,其他人此时会发现说,数组[5]这位置,已经给刚才又人放进去值了
就需要在这个位置基于链表+红黑树来进行处理,synchronized(数组[5]),加锁,基于链表或者是红黑树在这个位置插进去自己的数据
如果你是对数组里同一个位置的元素进行操作,才会加锁串行化处理;如果是对数组不同位置的元素操作,此时大家可以并发执行的
评论