写点什么

hive 窗口函数 / 分析函数详细剖析

发布于: 2021 年 01 月 21 日
hive窗口函数/分析函数详细剖析

hive 窗口函数/分析函数

在 sql 中有一类函数叫做聚合函数,例如 sum()、avg()、max()等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的。但是有时我们想要既显示聚集前的数据,又要显示聚集后的数据,这时我们便引入了窗口函数。窗口函数又叫 OLAP 函数/分析函数,窗口函数兼具分组和排序功能。


窗口函数最重要的关键字是 partition byorder by。


具体语法如下:over (partition by xxx order by xxx)


sum,avg,min,max 函数


准备数据


建表语句:create table bigdata_t1(cookieid string,createtime string,   --day pv int) row format delimited fields terminated by ',';
加载数据:load data local inpath '/root/hivedata/bigdata_t1.dat' into table bigdata_t1;
cookie1,2018-04-10,1cookie1,2018-04-11,5cookie1,2018-04-12,7cookie1,2018-04-13,3cookie1,2018-04-14,2cookie1,2018-04-15,4cookie1,2018-04-16,4
开启智能本地模式SET hive.exec.mode.local.auto=true;
复制代码


SUM 函数和窗口函数的配合使用:结果和 ORDER BY 相关,默认为升序。


#pv1select cookieid,createtime,pv,sum(pv) over(partition by cookieid order by createtime) as pv1 from bigdata_t1;
#pv2select cookieid,createtime,pv,sum(pv) over(partition by cookieid order by createtime rows between unbounded preceding and current row) as pv2from bigdata_t1;
#pv3select cookieid,createtime,pv,sum(pv) over(partition by cookieid) as pv3from bigdata_t1;
#pv4select cookieid,createtime,pv,sum(pv) over(partition by cookieid order by createtime rows between 3 preceding and current row) as pv4from bigdata_t1;
#pv5select cookieid,createtime,pv,sum(pv) over(partition by cookieid order by createtime rows between 3 preceding and 1 following) as pv5from bigdata_t1;
#pv6select cookieid,createtime,pv,sum(pv) over(partition by cookieid order by createtime rows between current row and unbounded following) as pv6from bigdata_t1;

pv1: 分组内从起点到当前行的pv累积,如,11号的pv1=10号的pv+11号的pv, 12号=10号+11号+12号pv2: 同pv1pv3: 分组内(cookie1)所有的pv累加pv4: 分组内当前行+往前3行,如,11号=10号+11号, 12号=10号+11号+12号, 13号=10号+11号+12号+13号, 14号=11号+12号+13号+14号pv5: 分组内当前行+往前3行+往后1行,如,14号=11号+12号+13号+14号+15号=5+7+3+2+4=21pv6: 分组内当前行+往后所有行,如,13号=13号+14号+15号+16号=3+2+4+4=13, 14号=14号+15号+16号=2+4+4=10
复制代码


如果不指定 rows between,默认为从起点到当前行;


如果不指定 order by,则将分组内所有值累加;


关键是理解 rows between 含义,也叫做 window 子句


preceding:往前


following:往后


current row:当前行


unbounded:起点


unbounded preceding 表示从前面的起点


unbounded following:表示到后面的终点


AVG,MIN,MAX,和 SUM 用法一样。


rownumber,rank,denserank,ntile 函数


准备数据


cookie1,2018-04-10,1cookie1,2018-04-11,5cookie1,2018-04-12,7cookie1,2018-04-13,3cookie1,2018-04-14,2cookie1,2018-04-15,4cookie1,2018-04-16,4cookie2,2018-04-10,2cookie2,2018-04-11,3cookie2,2018-04-12,5cookie2,2018-04-13,6cookie2,2018-04-14,3cookie2,2018-04-15,9cookie2,2018-04-16,7 CREATE TABLE bigdata_t2 (cookieid string,createtime string,   --day pv INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' stored as textfile;  加载数据:load data local inpath '/root/hivedata/bigdata_t2.dat' into table bigdata_t2;
复制代码


  • ROW_NUMBER()使用


ROW_NUMBER()从 1 开始,按照顺序,生成分组内记录的序列。


SELECT cookieid,createtime,pv,ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn FROM bigdata_t2;
复制代码


  • RANK 和 DENSE_RANK 使用


RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位 。


DENSE_RANK()生成数据项在分组中的排名,排名相等会在名次中不会留下空位。


SELECT cookieid,createtime,pv,RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1,DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2,ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3 FROM bigdata_t2 WHERE cookieid = 'cookie1';
复制代码


  • NTILE


有时会有这样的需求:如果数据排序后分为三部分,业务人员只关心其中的一部分,如何将这中间的三分之一数据拿出来呢?NTILE 函数即可以满足。


ntile 可以看成是:把有序的数据集合平均分配到指定的数量(num)个桶中, 将桶号分配给每一行。如果不能平均分配,则优先分配较小编号的桶,并且各个桶中能放的行数最多相差 1。


然后可以根据桶号,选取前或后 n 分之几的数据。数据会完整展示出来,只是给相应的数据打标签;具体要取几分之几的数据,需要再嵌套一层根据标签取出。


SELECT cookieid,createtime,pv,NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn1,NTILE(3) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn2,NTILE(4) OVER(ORDER BY createtime) AS rn3FROM bigdata_t2 ORDER BY cookieid,createtime;
复制代码


其他一些窗口函数

lag,lead,first\value,last\value 函数

  • LAG

LAG(col,n,DEFAULT) 用于统计窗口内往上第 n 行值第一个参数为列名,第二个参数为往上第 n 行(可选,默认为 1),第三个参数为默认值(当往上第 n 行为 NULL 时候,取默认值,如不指定,则为 NULL)


  SELECT cookieid,  createtime,  url,  ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,  LAG(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS last_1_time,  LAG(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS last_2_time   FROM bigdata_t4;      last_1_time: 指定了往上第1行的值,default为'1970-01-01 00:00:00'                 			 cookie1第一行,往上1行为NULL,因此取默认值 1970-01-01 00:00:00               			 cookie1第三行,往上1行值为第二行值,2015-04-10 10:00:02               			 cookie1第六行,往上1行值为第五行值,2015-04-10 10:50:01  last_2_time: 指定了往上第2行的值,为指定默认值  						 cookie1第一行,往上2行为NULL  						 cookie1第二行,往上2行为NULL  						 cookie1第四行,往上2行为第二行值,2015-04-10 10:00:02  						 cookie1第七行,往上2行为第五行值,2015-04-10 10:50:01
复制代码


  • LEAD


与 LAG 相反

LEAD(col,n,DEFAULT) 用于统计窗口内往下第 n 行值

第一个参数为列名,第二个参数为往下第 n 行(可选,默认为 1),第三个参数为默认值(当往下第 n 行为 NULL 时候,取默认值,如不指定,则为 NULL)


  SELECT cookieid,  createtime,  url,  ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,  LEAD(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS next_1_time,  LEAD(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS next_2_time   FROM bigdata_t4;
复制代码


  • FIRST_VALUE


取分组内排序后,截止到当前行,第一个值


  SELECT cookieid,  createtime,  url,  ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,  FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1   FROM bigdata_t4;
复制代码


  • LAST_VALUE


取分组内排序后,截止到当前行,最后一个值


  SELECT cookieid,  createtime,  url,  ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,  LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1   FROM bigdata_t4;
复制代码


如果想要取分组内排序后最后一个值,则需要变通一下:


  SELECT cookieid,  createtime,  url,  ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,  LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1,  FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime DESC) AS last2   FROM bigdata_t4   ORDER BY cookieid,createtime;
复制代码


特别注意 order by


如果不指定 ORDER BY,则进行排序混乱,会出现错误的结果


  SELECT cookieid,  createtime,  url,  FIRST_VALUE(url) OVER(PARTITION BY cookieid) AS first2    FROM bigdata_t4;
复制代码


cumedist,percentrank 函数


这两个序列分析函数不是很常用,注意: 序列函数不支持 WINDOW 子句


  • 数据准备


  d1,user1,1000  d1,user2,2000  d1,user3,3000  d2,user4,4000  d2,user5,5000     CREATE EXTERNAL TABLE bigdata_t3 (  dept STRING,  userid string,  sal INT  ) ROW FORMAT DELIMITED   FIELDS TERMINATED BY ','   stored as textfile;    加载数据:  load data local inpath '/root/hivedata/bigdata_t3.dat' into table bigdata_t3;
复制代码


  • CUME_DIST 和 order by 的排序顺序有关系


CUME_DIST 小于等于当前值的行数/分组内总行数 order 默认顺序 正序 升序

比如,统计小于等于当前薪水的人数,所占总人数的比例


  SELECT   dept,  userid,  sal,  CUME_DIST() OVER(ORDER BY sal) AS rn1,  CUME_DIST() OVER(PARTITION BY dept ORDER BY sal) AS rn2   FROM bigdata_t3;    rn1: 没有partition,所有数据均为1组,总行数为5,       第一行:小于等于1000的行数为1,因此,1/5=0.2       第三行:小于等于3000的行数为3,因此,3/5=0.6  rn2: 按照部门分组,dpet=d1的行数为3,       第二行:小于等于2000的行数为2,因此,2/3=0.6666666666666666
复制代码


  • PERCENT_RANK


PERCENT_RANK 分组内当前行的 RANK 值-1/分组内总行数-1


  SELECT   dept,  userid,  sal,  PERCENT_RANK() OVER(ORDER BY sal) AS rn1,   --分组内  RANK() OVER(ORDER BY sal) AS rn11,          --分组内RANK值  SUM(1) OVER(PARTITION BY NULL) AS rn12,     --分组内总行数  PERCENT_RANK() OVER(PARTITION BY dept ORDER BY sal) AS rn2   FROM bigdata_t3;    rn1: rn1 = (rn11-1) / (rn12-1)   	   第一行,(1-1)/(5-1)=0/4=0  	   第二行,(2-1)/(5-1)=1/4=0.25  	   第四行,(4-1)/(5-1)=3/4=0.75  rn2: 按照dept分组,       dept=d1的总行数为3       第一行,(1-1)/(3-1)=0       第三行,(3-1)/(3-1)=1
复制代码


grouping sets,grouping__id,cube,rollup 函数


这几个分析函数通常用于 OLAP 中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的 UV 数。


  • 数据准备


  2018-03,2018-03-10,cookie1  2018-03,2018-03-10,cookie5  2018-03,2018-03-12,cookie7  2018-04,2018-04-12,cookie3  2018-04,2018-04-13,cookie2  2018-04,2018-04-13,cookie4  2018-04,2018-04-16,cookie4  2018-03,2018-03-10,cookie2  2018-03,2018-03-10,cookie3  2018-04,2018-04-12,cookie5  2018-04,2018-04-13,cookie6  2018-04,2018-04-15,cookie3  2018-04,2018-04-15,cookie2  2018-04,2018-04-16,cookie1     CREATE TABLE bigdata_t5 (  month STRING,  day STRING,   cookieid STRING   ) ROW FORMAT DELIMITED   FIELDS TERMINATED BY ','   stored as textfile;    加载数据:  load data local inpath '/root/hivedata/bigdata_t5.dat' into table bigdata_t5;
复制代码


  • GROUPING SETS


grouping sets 是一种将多个 group by 逻辑写在一个 sql 语句中的便利写法。


等价于将不同维度的 GROUP BY 结果集进行 UNION ALL。


GROUPING__ID,表示结果属于哪一个分组集合。


  SELECT   month,  day,  COUNT(DISTINCT cookieid) AS uv,  GROUPING__ID   FROM bigdata_t5   GROUP BY month,day   GROUPING SETS (month,day)   ORDER BY GROUPING__ID;    grouping_id表示这一组结果属于哪个分组集合,  根据grouping sets中的分组条件month,day,1是代表month,2是代表day    等价于   SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM bigdata_t5 GROUP BY month UNION ALL   SELECT NULL as month,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM bigdata_t5 GROUP BY day;
复制代码


再如:


  SELECT   month,  day,  COUNT(DISTINCT cookieid) AS uv,  GROUPING__ID   FROM bigdata_t5   GROUP BY month,day   GROUPING SETS (month,day,(month,day))   ORDER BY GROUPING__ID;    等价于  SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM bigdata_t5 GROUP BY month   UNION ALL   SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM bigdata_t5 GROUP BY day  UNION ALL   SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM bigdata_t5 GROUP BY month,day;
复制代码


  • CUBE


根据 GROUP BY 的维度的所有组合进行聚合。


  SELECT   month,  day,  COUNT(DISTINCT cookieid) AS uv,  GROUPING__ID   FROM bigdata_t5   GROUP BY month,day   WITH CUBE   ORDER BY GROUPING__ID;    等价于  SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM bigdata_t5  UNION ALL   SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM bigdata_t5 GROUP BY month   UNION ALL   SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM bigdata_t5 GROUP BY day  UNION ALL   SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM bigdata_t5 GROUP BY month,day;
复制代码


  • ROLLUP


是 CUBE 的子集,以最左侧的维度为主,从该维度进行层级聚合。


  比如,以month维度进行层级聚合:  SELECT   month,  day,  COUNT(DISTINCT cookieid) AS uv,  GROUPING__ID    FROM bigdata_t5   GROUP BY month,day  WITH ROLLUP   ORDER BY GROUPING__ID;    --把month和day调换顺序,则以day维度进行层级聚合:     SELECT   day,  month,  COUNT(DISTINCT cookieid) AS uv,  GROUPING__ID    FROM bigdata_t5   GROUP BY day,month   WITH ROLLUP   ORDER BY GROUPING__ID;  (这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)
复制代码

搜索公众号:五分钟学大数据,获取大数据学习秘籍,你的大数据能力将实现质的飞跃


发布于: 2021 年 01 月 21 日阅读数: 22
用户头像

公众号:五分钟学大数据 2020.11.10 加入

大数据领域原创技术号,专注于大数据技术

评论

发布
暂无评论
hive窗口函数/分析函数详细剖析