写点什么

PyTorch 深度学习实战 | 基于 ResNet 的花卉图片分类

作者:TiAmo
  • 2023-03-22
    江苏
  • 本文字数:3231 字

    阅读完需:约 11 分钟

PyTorch 深度学习实战 | 基于ResNet的花卉图片分类

本期将提供一个利用深度学习进行花卉图片分类的案例,并使用迁移学习的方法解决训练数据较少的问题。图片分类是根据图像的语义信息对不同的图片进行区分,是计算机视觉中的基本问题,也是图像检测、图像分割、物体跟踪等高阶视觉任务的基础。在深度学习领域,图片分类的任务一般基于卷积神经网络来完成,如常见的卷积神经网络有 VGG、GoogleNet、ResNet 等。而在图像分类领域,数据标记是最基础和烦琐的工作。有时由于条件限制,往往得不到很多经过标记的、用于训练的图片,其中一个解决办法就是对已经预训练好的模型进行迁移学习。

本文是以 ResNet 为基础,对花卉图片进行迁移学习,从而完成对花卉图片的分类任务。

“工欲善其事,必先利其器”。如果直接使用 Python 完成模型的构建、导出等工作,势必会耗费相当多的时间,而且大部分工作都是深度学习中共同拥有的部分,即重复工作。所以本案例为了快速实现效果,就直接使用将这些共有部分整理成框架的 TensorFlow 和 Keras 来完成开发工作。TensorFlow 是 Google 公司开源的基于数据流图的科学计算库,适合用于机器学习、深度学习等人工智能领域。Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow、CNTK 或 Theano 作为后端运行。Keras 的开发重点是支持快速的实验,所以,本案例中,大部分与模型有关的工作都是基于 Keras API 来完成的。而现在版本的 TensorFlow 已经将 Keras 集成了进来,所以只需要安装 TensorFlow 即可。注意,由于本案例采用的 ResNet 网络较深,所以模型训练需要消耗的资源较多,需要 GPU 来加速训练过程。

1、环境安装


安装 TensorFlow 的 GPU 版本是相对比较繁杂的事情,需要找对应的驱动,安装合适版本的 CUDA 和 cuDNN。而一种比较方便的办法就是使用 Anaconda 来进行 tensorflow-gpu 的安装。具体的安装过程可以参考本书的附录 A.2 部分。其他需要安装的依赖包的名称及版本号如下:


其他依赖包可以在 Anaconda 界面上进行选择安装,也可以将其添加到 requirements.txt 文件,然后使用 conda install -yes -file requirements.txt 命令进行安装。另外,Conda 可以创建不同的环境来支持不同的开发要求。例如,有些工程需要 TensorFlow 1.15.0 环境来进行开发,而另外一些工程需要 TensorFlow 2.1.0 来进行开发,替换整个工作环境或者重新安装 TensorFlow 都不是很好的选择。所以,本案例使用 Conda 创建虚拟环境来解决。

2、数据集简介

在进行模型构建和训练之前,需要进行数据收集。为了简化收集工作,本案例采用已标记好的花卉数据集 Oxford 102 Flowers。数据集可以从 VGG 官方网站上进行下载。单击如图 1 所示的 Downloads 区域的 1、4 和 5 对应的超链接就可以下载所需要的文件。

■ 图 1 Oxford 102 Flowers 数据集下载网站


该数据集由牛津大学工程科学系于 2008 年发布,是一个英国本土常见花卉的图片数据集,包含 102 个类别,每类包含 40 ~ 258 张图片。在基于深度学习的图像分类任务中,这样较为少量的图片还是比较有挑战性的。Oxford 102 Flowers 的分类细节和部分类别的图片及对应的数量如图 2 所示。

■ 图 2 Oxford 102 Flowers 的分类细节和部分类别的图片及对应的数量


除了图片文件(dataset images),数据集中还包含图片分割标记文件(image segmentations)、分类标记文件(the image iabels)和数据集划分文件(the data splits)。由于本案例中不涉及图片分割,所以使用的是图片、分类标记和数据集划分文件。

3、数据集的下载与处理


Python urllib 库提供了 urlretrieve()函数可以直接将远程数据下载到本地。可以使用 urlretrieve()函数下载所需文件;然后把压缩的图片文件进行解压,并解析分类标记文件和数据集划分文件;再根据数据集划分文件并分成训练集、验证集和测试集;最后,向不同类别的数据集中按图片所标识的花的种类分类存放图片文件。代码及详细注释如代码清单 1 所示。

代码清单 1

import osfrom urllib.request import urlretrieveimport tarfilefrom scipy. io import loadmat2from shutil import copyfileimport globimport numpy as np
"""函数说明:按照分类(labels)复制未分组的图片到指定的位置10Parameters: data path - 数据存放目录 labels - 数据对应的标签,需要按标签放到不同的目录"""
def copy_data_files(data path, labels) :if not os. path, exists( data path) : os.mkdir(data path) # 创建分类目录for i in range(0,102) :os.mkdir(os.path.join( data path, str(i)))
for label in labels:src path = str(label[0])dst path = os.path. join(data path, label[1], src path. split(os. sep)[ - 1])copyfile(src path, dst path)
if_name_ _== '_main_': # 检查本地数据集目录是否存在,若不存在,则需创建 data set path = "./data' if not os. path. exists( data set path) : os.mkdir(data set path) #下载 102 Category Elower 数据集并解压 flowers archive file = "102flowers.tgz'flowers_url frefix = "https://www,robots.ox.ac.uk/~vgg/data/flowers/102/'flowers archive path = os.path, join(data set path, flowers archive file)if not os path.exists(flowers archive path) :print("正在下载图片文件...")urlretrieve(flowers url frefix + flowers archive file, flowers archive path)print("图片文件下载完成.")print("正在解压图片文件...")tarfile. open(flowers archive path)..extractall(path = data set_path)print("图片文件解压完成,")
# 下载标识文件,标识不同文件的类别flowers labels file = "imagelabels.mat'flowers labels path = os.path. join(data set path, flowers labels file) if not os.path.exists(flowers labels path) : print("正在下载标识文件...")urlretrieve(flowers url frefix + flowers labels file, flowers labels path)print("标识文件下载完成")flower_labels = loadmat(flowers_labels_path)['labels'][0] - 1
#下载数据集分类文件,包含训练集、验证集和测试集sets splits file = "setid.mat"sets splits_path = os.path. join(data set path, sets splits file)if not os.path,exists( sets splits path) :print("正在下载数据集分类文件...")urlretrieve(flowers url frefix + sets splits file, sets splits path)print("数据集分类文件下载完成")sets_splits = loadmat( sets splits path)
# 由于数据集分类文件中测试集数量比训练集多,所以进行了对调train set = sets splits['tstid'][0] - 1valid set = sets splits[ 'valid'][0] - 1test_set = sets splits['trnid'][0] - 1
# 获取图片文件名并找到图片对应的分类标识image files = sorted(glob.glob(os.path. join(data set path, 'jpg', ' x .jpg')))image labels = np.array([i for i in zip(image files, flower labels)])
# 将训练集、验证集和测试集分别放在不同的目录下print("正在进行训练集的复制...")copy_data files(os.path. join(data set path, 'train'), image labels[train set, :] print("已完成训练集的复制,开始复制验证集...")copy_data files(os.path. join(data_set_path, 'valid'), image labels[valid set, :] print("已完成验证集的复制,开始复制测试集...")copy_data files(os.path, join(data set_path, 'test'), image labels[test set, :] print("已完成测试集的复制,所有的图片下载和预处理工作已完成.")
复制代码

下载的图片数据有 330MB 左右。国外的网站有时候下载比较慢,可以用下载工具下载,或者使用参考书前言中提供的二维码进行下载。

需要说明的是,分类标记文件 imagelabels.mat 和数据集划分文件 setid.mat 是 MATLAB 的数据存储的标准格式,可以用 MATLAB 程序打开进行查看。本案例中使用 scipy 库的 loadmat()函数对 .mat 文件进行读取。图片分类后的目录结构如图 3 所示。

■ 图 3 图片分类后的目录结构

发布于: 2023-03-22阅读数: 18
用户头像

TiAmo

关注

有能力爱自己,有余力爱别人! 2022-06-16 加入

CSDN全栈领域优质创作者,万粉博主;阿里云专家博主、星级博主、技术博主、阿里云问答官,阿里云MVP;华为云享专家;华为Iot专家;亚马逊人工智能自动驾驶(大众组)吉尼斯世界纪录获得者

评论

发布
暂无评论
PyTorch 深度学习实战 | 基于ResNet的花卉图片分类_数据集_TiAmo_InfoQ写作社区