我看 JAVA 之 Thread & ThreadLocal
我看 JAVA 之 Thread & ThreadLocal
注:基于 jdk11
Thread
Thread 是程序里执行的一个线程。JVM 允许一个应用程序中可以有多个线程并发执行。
每一个线程都有一个优先级,高优先级的线程优于低优先级的线程先执行。同时,线程还可以被标记为守护线程。线程在被创建的时候优先级默认等同于创建者的优先级。
创建一个 Thread 通常有如下几种方式:
继承 Thread 类,重写 run()方法
实现 Runnable 接口,重写 run()方法
匿名类方式
实现了如下接口
Runnable 被 FunctionalInterface 注解的接口,定义了 public abstract void run()方法供子类去实现。
几个重要的成员变量
private volatile String name; 被 volatile 修饰的 name,每个线程必须有一个唯一的名字,方便调试,一般为 Thread-nextThreadNum()
private boolean daemon = false; 是否守护进程,默认为否
private boolean stillborn = false;
private long eetop;
private Runnable target; 执行目标
private ThreadGroup group; 线程组,默认为 ecurity.getThreadGroup() 或 父线程所在组
private ClassLoader contextClassLoader;
private AccessControlContext inheritedAccessControlContext;
private static int threadInitNumber; 与 Thread-拼接构成线程默认名称,private static synchronized int nextThreadNum()对其递增 threadInitNumber++
ThreadLocal.ThreadLocalMap threadLocals = null;
ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
private final long stackSize; 为当前线程申请的栈空间,默认为 0,取决于 vm 设计实现,有些 vm 会直接忽略此配置
private long nativeParkEventPointer;
private final long tid; 当前线程 ID
private static long threadSeqNumber; 线程 id 计数器,private static synchronized long nextThreadID()对其递增++threadSeqNumber
private volatile int threadStatus;
volatile Object parkBlocker;
private volatile Interruptible blocker;
private final Object blockerLock = new Object();
public static final int MIN_PRIORITY = 1; 线程可以设置的最小优先级
public static final int NORM_PRIORITY = 5;线程默认优先级
public static final int MAX_PRIORITY = 10;线程可以设置的最大优先级
线程的优先级会对应到不同操作系统的优先级,JVM 不一定设置的优先级进行线程调度
异常处理相关
//当前线程异常处理 handler,由 volatile 修饰
private volatile UncaughtExceptionHandler uncaughtExceptionHandler;
//所有线程缺省异常处理 handler,由 static volatile 修饰
private static volatile UncaughtExceptionHandler defaultUncaughtExceptionHandler;
几个重要的方法
启动线程,JVM 会调用当前线程的 run 方法
停止线程,已过时
中断
join 插队并阻塞当前执行线程,使用 loop + wait 的方式实现
suspend 与 resume 要成对出现,如果 A 线程访问某个资源 x 时 suspend(),那么没有任何线程可以访问资源 x 直到 A 线程被 resume()
线程状态及状态转换
状态定义
public enum State {
NEW,
RUNNABLE,
BLOCKED,
WAITING,
TIMED_WAITING,
TERMINATED;
}
状态图
例子:
package chapter02;
public class TestThread {
public static void main(String [] args) throws InterruptedException {
final Thread thread0
= new Thread(new Runnable() {
@Override
public void run() {
System.out.println("进入run");
try {
System.out.printf("enter run(), thread0' state: %s\n", Thread.currentThread().getState());
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
System.out.println("异常处理");
System.out.printf("on catch interrupt, thread0 isInterrupted or not ? %s \n", Thread.currentThread().isInterrupted());
System.out.printf("on catch interrupt, thread0' state: %s\n", Thread.currentThread().getState());
return;
}
System.out.println("退出run");
}
});
Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("进入thread1's run");
try {
Thread.sleep(1000);
System.out.printf("before interrupt, thread0 isInterrupted or nott ? %s \n", thread0.isInterrupted());
System.out.printf("enter thread1's run(), thread0' state: %s\n", thread0.getState());
Thread.sleep(1000);
thread0.interrupt();
System.out.printf("after interrupt, thread0 isInterrupted or not ? %s \n", thread0.isInterrupted());
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("退出thread1's run");
}
});
System.out.printf("after new(), thread0' state: %s\n", thread0.getState());
thread0.start();
System.out.printf("after start(), thread0' state: %s\n", thread0.getState());
thread1.start();
thread0.join();
System.out.printf("after join(), thread0' state: %s\n", thread0.getState());
System.out.println("退出");
}
}
打印结果如下:
after new(), thread0' state: NEW
after start(), thread0' state: RUNNABLE
进入run
enter run(), thread0' state: RUNNABLE
进入thread1's run
before interrupt, thread0 isInterrupted or nott ? false
enter thread1's run(), thread0' state: TIMED_WAITING
after interrupt, thread0 isInterrupted or not ? false
退出thread1's run
异常处理
on catch interrupt, thread0 isInterrupted or not ? false
on catch interrupt, thread0' state: RUNNABLE
after join(), thread0' state: TERMINATED
退出
异常捕获
说明:
//当前线程异常处理 handler,由 volatile 修饰
private volatile UncaughtExceptionHandler uncaughtExceptionHandler;
//所有线程缺省异常处理 handler,由 static volatile 修饰
private static volatile UncaughtExceptionHandler defaultUncaughtExceptionHandler;
例子:
package chapter02;
public class TestThread {
public static void main(String [] args) throws InterruptedException {
//全局异常处理器
Thread.setDefaultUncaughtExceptionHandler(new Thread.UncaughtExceptionHandler() {
@Override
public void uncaughtException(Thread t, Throwable e) {
System.out.println("-" + Thread.currentThread().getName());
String threadName = t.getName();
System.out.printf("global exception handler >> : current thread's name is %s, ", threadName);
System.out.printf("the error is %s \n",e.getLocalizedMessage());
}
});
final Thread thread0
= new Thread(new Runnable() {
@Override
public void run() {
System.out.println("进入thread0's run");
System.out.printf("enter run(), thread0' state: %s\n", Thread.currentThread().getState());
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
// e.printStackTrace();
// System.out.println("异常处理");
// System.out.printf("on catch interrupt, thread0 isInterrupted or not ? %s \n", Thread.currentThread().isInterrupted());
// System.out.printf("on catch interrupt, thread0' state: %s\n", Thread.currentThread().getState());
//
// return;
throw new RuntimeException(e);
}
System.out.println("退出thread0's run");
}
});
//thread0异常处理器
thread0.setUncaughtExceptionHandler(new Thread.UncaughtExceptionHandler() {
@Override
public void uncaughtException(Thread t, Throwable e) {
System.out.println("-" + Thread.currentThread().getName());
String threadName = t.getName();
System.out.printf("thread0 exception handler >> : current thread's name is %s, ", threadName);
System.out.printf("the error is %s \n",e.getLocalizedMessage());
}
});
Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("进入thread1's run");
try {
Thread.sleep(1000);
System.out.printf("before interrupt, thread0 isInterrupted or nott ? %s \n", thread0.isInterrupted());
System.out.printf("enter thread1's run(), thread0' state: %s\n", thread0.getState());
Thread.sleep(1000);
thread0.interrupt();
System.out.printf("after interrupt, thread0 isInterrupted or not ? %s \n", thread0.isInterrupted());
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("退出thread1's run");
}
});
System.out.printf("after new(), thread0' state: %s\n", thread0.getState());
thread0.start();
System.out.printf("after start(), thread0' state: %s\n", thread0.getState());
thread1.setDaemon(true);
thread1.start();
thread0.join();
thread1.join();
System.out.printf("after join(), thread0' state: %s\n", thread0.getState());
System.out.println("退出");
}
}
打印结果如下:
after new(), thread0' state: NEW
after start(), thread0' state: RUNNABLE
进入thread0's run
enter run(), thread0' state: RUNNABLE
进入thread1's run
before interrupt, thread0 isInterrupted or nott ? false
enter thread1's run(), thread0' state: TIMED_WAITING
after interrupt, thread0 isInterrupted or not ? true
-Thread-0
thread0 exception handler >> : current thread's name is Thread-0, the error is java.lang.InterruptedException: sleep interrupted
退出thread1's run
after join(), thread0' state: TERMINATED
退出
ThreadLocal
说明:
jdk1.2 开始,为解决多线程程序的并发问题提供了一种新的思路 ThreadLocal。使用这个工具类可以很简洁地编写出优美的多线程
程序,ThreadLocal 并不是一个 Thread,而是 Thread 的局部变量。
源码:
public class ThreadLocal<T> {
private final int threadLocalHashCode = nextHashCode();
private static AtomicInteger nextHashCode =
new AtomicInteger();
private static final int HASH_INCREMENT = 0x61c88647;
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
protected T initialValue() {
return null;
}
public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) {
return new SuppliedThreadLocal<>(supplier);
}
public ThreadLocal() {
}
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
boolean isPresent() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
return map != null && map.getEntry(this) != null;
}
private T setInitialValue() {
T value = initialValue();
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
map.set(this, value);
} else {
createMap(t, value);
}
if (this instanceof TerminatingThreadLocal) {
TerminatingThreadLocal.register((TerminatingThreadLocal<?>) this);
}
return value;
}
//设置线程本地值,如果已经存在覆盖,否则为当前线程创建新的ThreadLocalMap,赋值给当前线程的threadLocals局部变量
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
map.set(this, value);
} else {
createMap(t, value);
}
}
//删除本地值,不调用此方法在线程销毁后jvm也会回收,调用此方法后,如果多次访问get()方法可能导致多次触发initialValue()
public void remove() {
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null) {
m.remove(this);
}
}
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
return new ThreadLocalMap(parentMap);
}
T childValue(T parentValue) {
throw new UnsupportedOperationException();
}
static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {
private final Supplier<? extends T> supplier;
SuppliedThreadLocal(Supplier<? extends T> supplier) {
this.supplier = Objects.requireNonNull(supplier);
}
@Override
protected T initialValue() {
return supplier.get();
}
}
static class ThreadLocalMap {
/**
* The entries in this hash map extend WeakReference, using
* its main ref field as the key (which is always a
* ThreadLocal object). Note that null keys (i.e. entry.get()
* == null) mean that the key is no longer referenced, so the
* entry can be expunged from table. Such entries are referred to
* as "stale entries" in the code that follows.
*/
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
private static final int INITIAL_CAPACITY = 16;
private Entry[] table;
private int size = 0;
private int threshold; // Default to 0
private void setThreshold(int len) {
threshold = len * 2 / 3;
}
private static int nextIndex(int i, int len) {
return ((i + 1 < len) ? i + 1 : 0);
}
private static int prevIndex(int i, int len) {
return ((i - 1 >= 0) ? i - 1 : len - 1);
}
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
table = new Entry[INITIAL_CAPACITY];
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
private ThreadLocalMap(ThreadLocalMap parentMap) {
Entry[] parentTable = parentMap.table;
int len = parentTable.length;
setThreshold(len);
table = new Entry[len];
for (Entry e : parentTable) {
if (e != null) {
@SuppressWarnings("unchecked")
ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
if (key != null) {
Object value = key.childValue(e.value);
Entry c = new Entry(key, value);
int h = key.threadLocalHashCode & (len - 1);
while (table[h] != null)
h = nextIndex(h, len);
table[h] = c;
size++;
}
}
}
}
private Entry getEntry(ThreadLocal<?> key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
return getEntryAfterMiss(key, i, e);
}
private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
while (e != null) {
ThreadLocal<?> k = e.get();
if (k == key)
return e;
if (k == null)
expungeStaleEntry(i);
else
i = nextIndex(i, len);
e = tab[i];
}
return null;
}
private void set(ThreadLocal<?> key, Object value) {
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get();
if (k == key) {
e.value = value;
return;
}
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
private void remove(ThreadLocal<?> key) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
if (e.get() == key) {
e.clear();
expungeStaleEntry(i);
return;
}
}
}
private void replaceStaleEntry(ThreadLocal<?> key, Object value,
int staleSlot) {
Entry[] tab = table;
int len = tab.length;
Entry e;
// Back up to check for prior stale entry in current run.
// We clean out whole runs at a time to avoid continual
// incremental rehashing due to garbage collector freeing
// up refs in bunches (i.e., whenever the collector runs).
int slotToExpunge = staleSlot;
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
if (e.get() == null)
slotToExpunge = i;
// Find either the key or trailing null slot of run, whichever
// occurs first
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
// If we find key, then we need to swap it
// with the stale entry to maintain hash table order.
// The newly stale slot, or any other stale slot
// encountered above it, can then be sent to expungeStaleEntry
// to remove or rehash all of the other entries in run.
if (k == key) {
e.value = value;
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// Start expunge at preceding stale entry if it exists
if (slotToExpunge == staleSlot)
slotToExpunge = i;
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
return;
}
// If we didn't find stale entry on backward scan, the
// first stale entry seen while scanning for key is the
// first still present in the run.
if (k == null && slotToExpunge == staleSlot)
slotToExpunge = i;
}
// If key not found, put new entry in stale slot
tab[staleSlot].value = null;
tab[staleSlot] = new Entry(key, value);
// If there are any other stale entries in run, expunge them
if (slotToExpunge != staleSlot)
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
}
/**
* Expunge a stale entry by rehashing any possibly colliding entries
* lying between staleSlot and the next null slot. This also expunges
* any other stale entries encountered before the trailing null. See
* Knuth, Section 6.4
*
* @param staleSlot index of slot known to have null key
* @return the index of the next null slot after staleSlot
* (all between staleSlot and this slot will have been checked
* for expunging).
*/
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
// expunge entry at staleSlot
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--;
// Rehash until we encounter null
Entry e;
int i;
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
if (k == null) {
e.value = null;
tab[i] = null;
size--;
} else {
int h = k.threadLocalHashCode & (len - 1);
if (h != i) {
tab[i] = null;
// Unlike Knuth 6.4 Algorithm R, we must scan until
// null because multiple entries could have been stale.
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
}
}
}
return i;
}
private boolean cleanSomeSlots(int i, int n) {
boolean removed = false;
Entry[] tab = table;
int len = tab.length;
do {
i = nextIndex(i, len);
Entry e = tab[i];
if (e != null && e.get() == null) {
n = len;
removed = true;
i = expungeStaleEntry(i);
}
} while ( (n >>>= 1) != 0);
return removed;
}
private void rehash() {
expungeStaleEntries();
// Use lower threshold for doubling to avoid hysteresis
if (size >= threshold - threshold / 4)
resize();
}
private void resize() {
Entry[] oldTab = table;
int oldLen = oldTab.length;
int newLen = oldLen * 2;
Entry[] newTab = new Entry[newLen];
int count = 0;
for (Entry e : oldTab) {
if (e != null) {
ThreadLocal<?> k = e.get();
if (k == null) {
e.value = null; // Help the GC
} else {
int h = k.threadLocalHashCode & (newLen - 1);
while (newTab[h] != null)
h = nextIndex(h, newLen);
newTab[h] = e;
count++;
}
}
}
setThreshold(newLen);
size = count;
table = newTab;
}
private void expungeStaleEntries() {
Entry[] tab = table;
int len = tab.length;
for (int j = 0; j < len; j++) {
Entry e = tab[j];
if (e != null && e.get() == null)
expungeStaleEntry(j);
}
}
}
}
awen
Things happen for a reason. 2019.11.15 加入
还未添加个人简介
评论