使用 Redis 有序集合实现 IP 归属地查询
工作中经常遇到一类需求,根据 IP 地址段来查找 IP 对应的归属地信息。如果把查询过程放到关系型数据库中,会带来很大的 IO 消耗,速度也不能满足,显然是不合适的。
那有哪些更好的办法呢?为此做了一些尝试,下面来详细说明。
1、构建索引文件
在 GitHub 上看到一个 ip2region 项目,作者通过生成一个包含有二级索引的文件来实现快速查询,查询速度足够快,毫秒级别。但如果想更新地址段或归属地信息,每次都要重新生成文件,并不是很方便。
不过还是推荐大家看看这个项目,其中建索引的思想还是很值得学习的。作者的开源项目中只有查询的相关代码,并没有生成索引文件的代码,我依照原理图写了一段生成索引文件的代码,如下:
2、使用 Redis 缓存
目前有两种方式对 IP 以及归属地信息进行缓存:
第一种是将起始 IP,结束 IP 以及中间所有 IP 转换成整型,然后以字符串方式,用转换后的 IP 作为 key,归属地信息作为 value 存入 Redis;
第二种是采用有序集合和散列方式,首先将起始 IP 和结束 IP 添加到有序集合 ip2cityid,城市 ID 作为成员,转换后的 IP 作为分值,然后再将城市 ID 和归属地信息添加到散列 cityid2city,城市 ID 作为 key,归属地信息作为 value。
第一种方式就不多做介绍了,简单粗暴,非常不推荐。查询速度当然很快,毫秒级别,但缺点也十分明显,我用 1000 条数据做了测试,缓存时间长,大概 20 分钟,占用空间大,将近 1G。
下面介绍第二种方式,直接看代码:
测试数据大概 50 万条,缓存所用时间不到 2 分钟,占用内存 182M,查询速度毫秒级别。显而易见,这种方式更值得尝试。
zrevrangebyscore
方法的时间复杂度是 O(log(N)+M), N
为有序集的基数, M
为结果集的基数。可见当 N 的值越大,查询效率越慢,具体在多大的数据量还可以高效查询,这个有待验证。不过这个问题我觉得并不用担心,遇到了再说吧。
以上。
版权声明: 本文为 InfoQ 作者【AlwaysBeta】的原创文章。
原文链接:【http://xie.infoq.cn/article/228bce6d329062ad4ff3e0bf2】。文章转载请联系作者。
评论