写点什么

Windows10 下 CUDA 新旧多版本共存

作者:北桥苏
  • 2023-11-27
    广东
  • 本文字数:1298 字

    阅读完需:约 4 分钟

前言

​ 为了运行一个 Tensorflow1.6.0 的项目,CPU 跑了三个多小时才完成一个 epoch,还得用 GPU。但这个版本的 TF 只能在 10 以下的 CUDA 平台,但是以前的 Pytorch 也要继续啊。所以需要在本地 Windows 下安装多个版本 CUDA,其实有两种方式让 CUDA 共存。一种是英伟达的工具包安装,还一种是 CUDA 的动态链接库通过 conda 安装。


​ 由于是 Windows,配置 CUDA 多版本环境变量可能还会出现 “此环境变量太大,此对话框允许将值设置为最长 2047 个字符” 和安装后运行项目 “If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info” 等报错,接下来就开始一一介绍了。


安装

动态链接库方式

相比英伟达官方提供的 CUDA Toolkit,这种方式显得特别轻便。因为前者是一个完整的工具安装包,其中还提供了英伟达驱动程序(可以不勾选)和开发 CUDA 程序的工具。而对于使用深度学习框架的话,训练使用 GPU 确实只需要使用 CUDA 的动态链接库就可以,而且只需要用 conda 安装就可以。


创建环境并激活


这里还是用 conda 创建一个新环境专门用于一个版本的 CUDA,要几个就创建几个,然后激活并进入,当然也要看看当前 conda 支持哪些 cuda 和 cudnn。


conda create -n tensorflow-cu python=3.6conda activate tensorflow-cu
复制代码


查看支持的 cuda


conda search cudatoolkit --info
复制代码



查看支持的 cudnn



安装 cuda 和 cudnn


conda install cudatoolkit=9.01conda install cudnn=7.1.4
复制代码



工具包方式

这种方法就是先明确自己需要安装的版本,然后去英伟达官网下载安装包。我上面也有文章介绍,不过在以前基础上再加一低版本,需要注意的就是不要勾选驱动程序,然后切换版本要配置环境变量。


流程安装



切记只勾选 CUDA,切记



重新选择位置



安装完毕后,他会自动在环境变量里新增 CUDA_PATH_V9_0 和 NVCUDASAMPLES9_0_ROOT,并且 CUDA_PATH 和 NVCUDASAMPLES 也会替换成最后安装的版本,但当前依然还是之前的 CUDA11,这个时候还要去 Path 里设置一下。



要让版本切换到 v9,需要手动添加 CUDA9 的 development 下 bin 和 libnvvp,并放 v11 前面,但是保存时报 “此环境变量太大”。这个是因为 Patch 变量的值只有 2047 字符大小,解决方法可以修改注册表,在 Path 里删除没用的环境变量和用外边的变量做一个引入。就是 bin 和 libvvp 都是 CUDA9 下,只需要引入这个就可以节省更多字符占用了。



%CUDA_PATH_V11_4%\bin%CUDA_PATH_V11_4%\libnvvp
复制代码


虽然可以保存了,但是想切换 CUDA 版本要再次打开 Path,发现这个弹窗变成了一行,而不是像之前那样按变量展开。这是因为刚刚为了让 V9 版本在前面,我把他顶到了最上面,而最顶上如果有变量方式的引入,Path 就会变成一行,我们只需要把一个其他绝对位置的变量放在顶部就可以解决了。

其他

当切换后安装 tensorflow-gpu 开始训练时,出现 “Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info”,因为当前显卡 GTX 750Ti,显存太小,可以将批次 batch_size 调小解决。




用户头像

北桥苏

关注

公众号:ZERO开发 2023-05-08 加入

专注后端实战技术分享,不限于PHP,Python,JavaScript, Java等语言,致力于给猿友们提供有价值,有干货的内容。

评论

发布
暂无评论
Windows10 下 CUDA 新旧多版本共存_Python_北桥苏_InfoQ写作社区