助力水下潜行:浮力调节系统仿真
01.建设海洋强国
海洋蕴藏着丰富的资源,二十大报告强调,要“发展海洋经济,保护海洋生态环境,加快建设海洋强国”。建设海洋强国旨在通过科技创新驱动、合理开发利用海洋资源、强化海洋环境保护与生态修复、提升海洋经济质量等多个方面努力,实现从浅海到深海、从海洋经济发展到海洋生态文明建设的全面跨越。这其中,掌握和利用好水下资源尤为重要。鉴于海洋环境的特殊性,水下资源的勘探与开发必须依赖水下航行器,包括有缆水下机器人(Remotely Operated Vehicle, ROV),自主式水下航行器(Autonomous Underwater Vehicle, AUV)以及水下载人潜艇等。
浮力调节系统作为水下航行器的关键部件,能够为潜水器提供稳定悬浮的深度控制,并能根据工作深度的不同通过改变浮力来带动潜水器上浮或下潜。因浮力变化原理不同,其调节方法主要分为可调压载和可变体积两种方式。可变体积调节通常采用油囊实现,利用液压泵将油从内囊排至外囊以提升浮力,反之则降低浮力。这种方式可以在不改变潜水器重量的情况下调节浮力,目前被广泛应用在轻型潜水器中。
▲油囊式浮力调节器
浮力调节系统的性能直接影响水下航行器的安全。早在 1963 年 4 月,美国海军“长尾鲨”号潜艇执行深度探测任务时遭遇海水断层,而浮力调节系统未能及时响应,潜艇极速下降失去控制,最终导致 129 名船员无一生还的惨烈后果。因此,对水下航行器浮力调节系统相关课题的深入研究至关重要。
▲下潜超过极限深度后,失事潜艇被彻底粉碎
02.浮力调节的工作原理
可变体积式调节是通过改变外油囊体积实现的,其原理是改变潜水器的排水量从而改变其浮力,外油囊体积调节量ΔV 需要满足式:
其中ΔVp 代表初始配平细调时潜水器所需排水体积调整量,其取值由潜水器自身重量与初始排水体积以及潜水器在水中的姿态计算而来;
ΔVΒ表示克服包括耐压壳体形变等影响因素在内的且可保证潜水器可靠上浮所需浮力对应的排水体积调整量;
ΔVBρ为不同水域密度差导致浮力变化所对应的排水体积调整量,其计算公式为:
其中ρmax 为已知最大海水密度;
ρmin 为已知最小海水密度;
ρ0 为平均海水密度。在水下航行,特别是在未知海域航行时,需要根据获取到的传感器数据来进行调整,防止出现海水密度断层导致安全事故。
03.浮力调节系统仿真
浮力调节系统的性能与潜水器的安全直接相关,应将其作为潜水器设计的重中之重。传统的潜水器设计过程需要搭建测试场地,进行水下实验,但由于水下环境的特殊性,加之水密设备大多价格昂贵,使得测试存在较大困难,且发现问题难以及时修改。在研发设计过程中使用仿真工具则可以较好规避此类问题。
天目全数字实时仿真软件 SkyEye 是一款基于可视化建模的硬件行为级仿真平台,支持用户通过拖拽的方式对浮力调节系统进行建模和仿真。SkyEye 致力于真实场景下的仿真分析,可在无需二次开发的情况下运行二进制可执行文件,切实解决实际工程中存在的问题。
基于 SkyEye 仿真的浮力调节系统主要包括浮力主控系统、动力控制系统以及信号调理系统。
▲基于 SkyEye 的浮力调节系统仿真原理图
动力控制系统主要控制液压系统,通过将油液从内囊抽到外囊或者从外囊抽到内囊来实现潜水器的上浮与下潜。其中:
电磁阀控制油路的通断;
正/反向阀控制油液流动的方向;
电机与齿轮泵相连产生动力。
信号调理系统负责将各传感器采集的数据通过 A/D 采样后传输给浮力主控系统进行决策。
浮力主控系统根据所接收到的信号调理系统传输来的数据进行决策,控制动力控制系统产生动作,同时调用上位机通信接口将浮力调节系统运行状态上报,并接收潜水器主控系统的控制信息。
基于 SkyEye 的仿真浮力调节系统能够有效降低系统的调试难度与成本,在正式的水下实验前先进行仿真实验,最大限度覆盖可能的测试场景,便于开发测试人员分析改善可能存在的问题,提高系统性能,从而推动水下航行器的发展,助力加快建设海洋强国。
版权声明: 本文为 InfoQ 作者【DevOps和数字孪生】的原创文章。
原文链接:【http://xie.infoq.cn/article/1f44644bdc9735b5a0fff49bf】。文章转载请联系作者。
评论