Flink 自定义 Avro 序列化 (Source/Sink) 到 kafka 中
前言
最近一直在研究如果提高 kafka 中读取效率,之前一直使用字符串
的方式将数据写入到 kafka 中。当数据将特别大的时候发现效率不是很好,偶然之间接触到了Avro
序列化,发现 kafka 也是支持 Avro 的方式于是就有了本篇文章。
环境所依赖的 pom 文件
<dependencies>
<dependency>
<groupId>org.apache.avro</groupId>
<artifactId>avro</artifactId>
<version>1.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_2.12</artifactId>
<version>1.10.1</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-scala -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_2.12</artifactId>
<version>1.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_2.12</artifactId>
<version>1.10.1</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-avro -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-avro</artifactId>
<version>1.10.1</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients -->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>1.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-streams</artifactId>
<version>1.0.0</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.avro</groupId>
<artifactId>avro-maven-plugin</artifactId>
<version>1.8.2</version>
<executions>
<execution>
<phase>generate-sources</phase>
<goals>
<goal>schema</goal>
</goals>
<configuration>
<sourceDirectory>${project.basedir}/src/main/avro/</sourceDirectory>
<outputDirectory>${project.basedir}/src/main/java/</outputDirectory>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.6</source>
<target>1.6</target>
</configuration>
</plugin>
</plugins>
</build>
一、Avro 提供的技术支持包括以下五个方面:
优秀的数据结构;
一个紧凑的,快速的,二进制数据格式;
一个容器文件,用来存储持久化数据;
RPC 远程过程调用;
集成最简单的动态语言。读取或者写入数据文件,使用或实现 RPC 协议均不需要代码实现。对于静态- - 语言编写的话需要实现;
二、Avro 优点
二进制消息,性能好/效率高
使用 JSON 描述模式
模式和数据统一存储,消息自描述,不需要生成 stub 代码(支持生成 IDL)
RPC 调用在握手阶段交换模式定义
包含完整的客户端/服务端堆栈,可快速实现 RPC
支持同步和异步通信
支持动态消息
模式定义允许定义数据的排序(序列化时会遵循这个顺序)
提供了基于 Jetty 内核的服务基于 Netty 的服务
三、Avro Json 格式介绍
{
"namespace": "com.avro.bean",
"type": "record",
"name": "UserBehavior",
"fields": [
{"name": "userId", "type": "long"},
{"name": "itemId", "type": "long"},
{"name": "categoryId", "type": "int"},
{"name": "behavior", "type": "string"},
{"name": "timestamp", "type": "long"}
]
}
namespace : 要生成的目录
type : 类型 avro 使用 record
name : 会自动生成对应的对象
fields : 要指定的字段
注意: 创建的文件后缀名一定要叫 avsc
我们使用 idea 生成 UserBehavior
对象
四、使用 Java 自定义序列化到 kafka
首先我们先使用 Java 编写 Kafka 客户端写入数据和消费数据。
4.1 准备测试数据
543462,1715,1464116,pv,1511658000
662867,2244074,1575622,pv,1511658000
561558,3611281,965809,pv,1511658000
894923,3076029,1879194,pv,1511658000
834377,4541270,3738615,pv,1511658000
315321,942195,4339722,pv,1511658000
625915,1162383,570735,pv,1511658000
4.2 自定义 Avro 序列化和反序列化
首先我们需要实现 2 个类分别为Serializer
和Deserializer
分别是序列化和反序列化
package com.avro.AvroUtil;
import com.avro.bean.UserBehavior;
import org.apache.avro.io.BinaryDecoder;
import org.apache.avro.io.BinaryEncoder;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.io.EncoderFactory;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.avro.specific.SpecificDatumWriter;
import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.serialization.Serializer;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.util.Map;
/**
* @author 大数据老哥
* @version V1.0
* @Package com.avro.AvroUtil
* @File :SimpleAvroSchemaJava.java
* @date 2021/1/8 20:02
*/
/**
* 自定义序列化和反序列化
*/
public class SimpleAvroSchemaJava implements Serializer<UserBehavior>, Deserializer<UserBehavior> {
@Override
public void configure(Map<String, ?> map, boolean b) {
}
//序列化方法
@Override
public byte[] serialize(String s, UserBehavior userBehavior) {
// 创建序列化执行器
SpecificDatumWriter<UserBehavior> writer = new SpecificDatumWriter<UserBehavior>(userBehavior.getSchema());
// 创建一个流 用存储序列化后的二进制文件
ByteArrayOutputStream out = new ByteArrayOutputStream();
// 创建二进制编码器
BinaryEncoder encoder = EncoderFactory.get().directBinaryEncoder(out, null);
try {
// 数据入都流中
writer.write(userBehavior, encoder);
} catch (IOException e) {
e.printStackTrace();
}
return out.toByteArray();
}
@Override
public void close() {
}
//反序列化
@Override
public UserBehavior deserialize(String s, byte[] bytes) {
// 用来保存结果数据
UserBehavior userBehavior = new UserBehavior();
// 创建输入流用来读取二进制文件
ByteArrayInputStream arrayInputStream = new ByteArrayInputStream(bytes);
// 创建输入序列化执行器
SpecificDatumReader<UserBehavior> stockSpecificDatumReader = new SpecificDatumReader<UserBehavior>(userBehavior.getSchema());
//创建二进制解码器
BinaryDecoder binaryDecoder = DecoderFactory.get().directBinaryDecoder(arrayInputStream, null);
try {
// 数据读取
userBehavior=stockSpecificDatumReader.read(null, binaryDecoder);
} catch (IOException e) {
e.printStackTrace();
}
// 结果返回
return userBehavior;
}
}
4.3 创建序列化对象
package com.avro.kafka;
import com.avro.bean.UserBehavior;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.io.BufferedReader;
import java.io.FileReader;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
/**
* @author 大数据老哥
* @version V1.0
* @Package com.avro.kafka
* @File :UserBehaviorProducerKafka.java
* @date 2021/1/8 20:14
*/
public class UserBehaviorProducerKafka {
public static void main(String[] args) throws InterruptedException {
// 获取数据
List<UserBehavior> data = getData();
// 创建配置文件
Properties props = new Properties();
props.setProperty("bootstrap.servers", "192.168.100.201:9092,192.168.100.202:9092,192.168.100.203:9092");
props.setProperty("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.setProperty("value.serializer", "com.avro.AvroUtil.SimpleAvroSchemaJava");
// 创建kafka的生产者
KafkaProducer<String, UserBehavior> userBehaviorProducer = new KafkaProducer<String, UserBehavior>(props);
// 循环遍历数据
for (UserBehavior userBehavior : data) {
ProducerRecord<String, UserBehavior> producerRecord = new ProducerRecord<String, UserBehavior>("UserBehaviorKafka", userBehavior);
userBehaviorProducer.send(producerRecord);
System.out.println("数据写入成功"+data);
Thread.sleep(1000);
}
}
public static List<UserBehavior> getData() {
ArrayList<UserBehavior> userBehaviors = new ArrayList<UserBehavior>();
try {
BufferedReader br = new BufferedReader(new FileReader(new File("data/UserBehavior.csv")));
String line = "";
while ((line = br.readLine()) != null) {
String[] split = line.split(",");
userBehaviors.add( new UserBehavior(Long.parseLong(split[0]), Long.parseLong(split[1]), Integer.parseInt(split[2]), split[3], Long.parseLong(split[4])));
}
} catch (Exception e) {
e.printStackTrace();
}
return userBehaviors;
}
}
注意:value.serializer
一定要指定我们自己写好的那个反序列化类,负责会无效
4.4 创建反序列化对象
package com.avro.kafka;
import com.avro.bean.UserBehavior;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import java.util.Arrays;
import java.util.Properties;
/**
* @author 大数据老哥
* @version V1.0
* @Package com.avro.kafka
* @File :UserBehaviorConsumer.java
* @date 2021/1/8 20:58
*/
public class UserBehaviorConsumer {
public static void main(String[] args) {
Properties prop = new Properties();
prop.put("bootstrap.servers", "192.168.100.201:9092,192.168.100.202:9092,192.168.100.203:9092");
prop.put("group.id", "UserBehavior");
prop.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
// 设置反序列化类为自定义的avro反序列化类
prop.put("value.deserializer", "com.avro.AvroUtil.SimpleAvroSchemaJava");
KafkaConsumer<String, UserBehavior> consumer = new KafkaConsumer<String, UserBehavior>(prop);
consumer.subscribe(Arrays.asList("UserBehaviorKafka"));
while (true) {
ConsumerRecords<String, UserBehavior> poll = consumer.poll(1000);
for (ConsumerRecord<String, UserBehavior> stringStockConsumerRecord : poll) {
System.out.println(stringStockConsumerRecord.value());
}
}
}
}
4.5 启动运行
创建 kafkaTopic 和启动一个消费者
# 创建topic
./kafka-topics.sh --create --zookeeper node01:2181,node02:2181,node03:2181 --replication-factor 2 --partitions 3 --topic UserBehaviorKafka
# 模拟消费者
./kafka-console-consumer.sh --from-beginning --topic UserBehaviorKafka --zookeeper node01:2181,node02:2node03:2181
五、Flink 实现 Avro 自定义序列化到 Kafka
到这里好多小伙们就说我 Java 实现了那 Flink 不就改一下 Consumer 和 Producer 不就完了吗?
5.1 准备数据
543462,1715,1464116,pv,1511658000
662867,2244074,1575622,pv,1511658000
561558,3611281,965809,pv,1511658000
894923,3076029,1879194,pv,1511658000
834377,4541270,3738615,pv,1511658000
315321,942195,4339722,pv,1511658000
625915,1162383,570735,pv,1511658000
5.2 创建 Flink 自定义 Avro 序列化和反序列化
当我们创建 FlinkKafka 连接器的时候发现使用 Java 那个类序列化发现不行,于是我们改为了系统自带的那个类进行测试。点击源码查看发系统自带的那个 String 其实实现的是DeserializationSchema
和SerializationSchema
,那我们是不是也可以模仿一个那?
package com.avro.AvroUtil;
import com.avro.bean.UserBehavior;
import com.typesafe.sslconfig.ssl.FakeChainedKeyStore;
import org.apache.avro.io.BinaryDecoder;
import org.apache.avro.io.BinaryEncoder;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.io.EncoderFactory;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.avro.specific.SpecificDatumWriter;
import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.serialization.SerializationSchema;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.serialization.Serializer;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.util.Map;
/**
* @author 大数据老哥
* @version V1.0
* @Package com.avro.AvroUtil
* @File :SimpleAvroSchemaFlink.java
* @date 2021/1/8 20:02
*/
/**
* 自定义序列化和反序列化
*/
public class SimpleAvroSchemaFlink implements DeserializationSchema<UserBehavior>, SerializationSchema<UserBehavior> {
@Override
public byte[] serialize(UserBehavior userBehavior) {
// 创建序列化执行器
SpecificDatumWriter<UserBehavior> writer = new SpecificDatumWriter<UserBehavior>(userBehavior.getSchema());
// 创建一个流 用存储序列化后的二进制文件
ByteArrayOutputStream out = new ByteArrayOutputStream();
// 创建二进制编码器
BinaryEncoder encoder = EncoderFactory.get().directBinaryEncoder(out, null);
try {
// 数据入都流中
writer.write(userBehavior, encoder);
} catch (IOException e) {
e.printStackTrace();
}
return out.toByteArray();
}
@Override
public TypeInformation<UserBehavior> getProducedType() {
return TypeInformation.of(UserBehavior.class);
}
@Override
public UserBehavior deserialize(byte[] bytes) throws IOException {
// 用来保存结果数据
UserBehavior userBehavior = new UserBehavior();
// 创建输入流用来读取二进制文件
ByteArrayInputStream arrayInputStream = new ByteArrayInputStream(bytes);
// 创建输入序列化执行器
SpecificDatumReader<UserBehavior> stockSpecificDatumReader = new SpecificDatumReader<UserBehavior>(userBehavior.getSchema());
//创建二进制解码器
BinaryDecoder binaryDecoder = DecoderFactory.get().directBinaryDecoder(arrayInputStream, null);
try {
// 数据读取
userBehavior=stockSpecificDatumReader.read(null, binaryDecoder);
} catch (IOException e) {
e.printStackTrace();
}
// 结果返回
return userBehavior;
}
@Override
public boolean isEndOfStream(UserBehavior userBehavior) {
return false;
}
}
5.3 创建 Flink Comsumer 反序列化
package com.avro.FlinkKafka
import com.avro.AvroUtil.{SimpleAvroSchemaFlink}
import com.avro.bean.UserBehavior
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011
import java.util.Properties
/**
* @Package com.avro.FlinkKafka
* @File :UserBehaviorConsumerFlink.java
* @author 大数据老哥
* @date 2021/1/8 21:18
* @version V1.0
*/
object UserBehaviorConsumerFlink {
def main(args: Array[String]): Unit = {
//1.构建流处理运行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1) // 设置并行度1 方便后面测试
// 2.设置kafka 配置信息
val prop = new Properties
prop.put("bootstrap.servers", "192.168.100.201:9092,192.168.100.202:9092,192.168.100.203:9092")
prop.put("group.id", "UserBehavior")
prop.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
// 设置反序列化类为自定义的avro反序列化类
prop.put("value.deserializer", "com.avro.AvroUtil.SimpleAvroSchemaFlink")
// val kafka: FlinkKafkaConsumer011[String] = new FlinkKafkaConsumer011[String]("UserBehaviorKafka", new SimpleStringSchema(), prop)
// 3.构建Kafka 连接器
val kafka: FlinkKafkaConsumer011[UserBehavior] = new FlinkKafkaConsumer011[UserBehavior]("UserBehavior", new SimpleAvroSchemaFlink(), prop)
//4.设置Flink层最新的数据开始消费
kafka.setStartFromLatest()
//5.基于kafka构建数据源
val data: DataStream[UserBehavior] = env.addSource(kafka)
//6.结果打印
data.print()
env.execute("UserBehaviorConsumerFlink")
}
}
5.4 创建 Flink Producer 序列化
package com.avro.FlinkKafka
import com.avro.AvroUtil.SimpleAvroSchemaFlink
import com.avro.bean.UserBehavior
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011
import java.util.Properties
/**
* @Package com.avro.FlinkKafka
* @File :UserBehaviorProducerFlink.java
* @author 大数据老哥
* @date 2021/1/8 21:38
* @version V1.0
*/
object UserBehaviorProducerFlink {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
val value = env.readTextFile("./data/UserBehavior.csv")
val users: DataStream[UserBehavior] = value.map(row => {
val arr = row.split(",")
val behavior = new UserBehavior()
behavior.setUserId(arr(0).toLong)
behavior.setItemId(arr(1).toLong)
behavior.setCategoryId(arr(2).toInt)
behavior.setBehavior(arr(3))
behavior.setTimestamp(arr(4).toLong)
behavior
})
val prop = new Properties()
prop.setProperty("bootstrap.servers", "node01:9092,node02:9092,node03:9092")
//4.连接Kafka
val producer: FlinkKafkaProducer011[UserBehavior] = new FlinkKafkaProducer011[UserBehavior]("UserBehaviorKafka", new SimpleAvroSchemaFlink(), prop)
//5.将数据打入kafka
users.addSink(producer)
//6.执行任务
env.execute("UserBehaviorProducerFlink")
}
}
5.5 启动运行
需要源码的请去 GitHub 自行下载 https://github.com/lhh2002/Flink_Avro
小结
其实我在实现这个功能的时候也是蒙的,不会难道就不学了吗,肯定不是呀。我在 5.2 提出的那个问题的时候其实是我自己亲身经历过的。首先遇到了问题不要想着怎么放弃,而是想想怎么解决,当时我的思路看源码
看别人写的。最后经过不懈的努力也终成功了,我在这里为大家提供Flink面试题
需要的朋友可以去下面 GitHub 去下载,信自己,努力和汗水总会能得到回报的。我是大数据老哥,我们下期见~~~
>资源获取 获取 Flink 面试题,Spark 面试题,程序员必备软件,hive 面试题,Hadoop 面试题,Docker 面试题,简历模板等资源请去
>GitHub 自行下载 https://github.com/lhh2002/Framework-Of-BigData
>Gitee 自行下载 https://gitee.com/liheyhey/dashboard/projects
版权声明: 本文为 InfoQ 作者【大数据老哥】的原创文章。
原文链接:【http://xie.infoq.cn/article/1ec0a1bc871c79031afea43fa】。
本文遵守【CC-BY 4.0】协议,转载请保留原文出处及本版权声明。
大数据老哥
微信搜公众号【大数据老哥】 2021.01.03 加入
微信搜索公众号【大数据老哥】 自己GitHub【https://github.com/lhh2002】 欢迎来star
评论