SQL 子查询怎么优化?写的很深的这种!
子查询(Subquery)的优化一直以来都是 SQL 查询优化中的难点之一。关联子查询的基本执行方式类似于 Nested-Loop,但是这种执行方式的效率常常低到难以忍受。当数据量稍大时,必须在优化器中对其进行去关联化(Decoorelation 或 Unnesting),将其改写为类似于 Semi-Join 这样的更高效的算子。
前人已经总结出一套完整的方法论,理论上能对任意一个查询进行去关联化。本文结合 SQL Server 以及 HyPer 的几篇经典论文,由浅入深地讲解一下这套去关联化的理论体系。它们二者所用的方法大同小异,基本思想是想通的。
子查询简介
子查询是定义在 SQL 标准中一种语法,它可以出现在 SQL 的几乎任何地方,包括 SELECT, FROM, WHERE 等子句中。
总的来说,子查询可以分为关联子查询(Correlated Subquery)和非关联子查询(Non-correlated Subquery)。后者非关联子查询是个很简单的问题,最简单地,只要先执行它、得到结果集并物化,再执行外层查询即可。下面是一个例子:
▲ TPCH-13 是一个非关联子查询
非关联子查询不在本文讨论范围之列,除非特别声明,以下我们说的子查询都是指关联子查询。
关联子查询的特别之处在于,其本身是不完整的:它的闭包中包含一些外层查询提供的参数。显然,只有知道这些参数才能运行该查询,所以我们不能像对待非关联子查询那样。
根据产生的数据来分类,子查询可以分成以下几种:
标量(Scalar-valued)子查询:输出一个只有一行一列的结果表,这个标量值就是它的结果。如果结果为空(0 行),则输出一个 NULL。但是注意,超过 1 行结果是不被允许的,会产生一个运行时异常。
标量子查询可以出现在任意包含标量的地方,例如 SELECT、WHERE 等子句里。下面是一个例子:
▲ Query 1: 一个出现在 WHERE 子句中的标量子查询,关联参数用红色字体标明了
▲ Query 2: 一个出现在 SELECT 子句中的标量子查询
存在性检测(Existential Test)子查询:特指 EXISTS 的子查询,返回一个布尔值。如果出现在 WHERE 中,这就是我们熟悉的 Semi-Join。当然,它可能出现在任何可以放布尔值的地方。
▲ Query 3: 一个 Semi-Join 的例子
集合比较(Quantified Comparision)子查询:特指 IN、SOME、ANY 的查询,返回一个布尔值,常用的形式有:x = SOME(Q)
(等价于 x IN Q
)或 X <> ALL(Q)
(等价于 x NOT IN Q
)。同上,它可能出现在任何可以放布尔值的地方。
▲ Query 4: 一个集合比较的非关联子查询
原始执行计划
我们以 Query 1 为例,直观地感受一下,为什么说关联子查询的去关联化是十分必要的。
下面是 Query 1 的未经去关联化的原始查询计划(Relation Tree)。与其他查询计划不一样的是,我们特地画出了表达式树(Expression Tree),可以清晰地看到:子查询是实际上是挂在 Filter 的条件表达式下面的。
实际执行时,查询计划执行器(Executor)在执行到 Filter 时,调用表达式执行器(Evaluator);由于这个条件表达式中包含一个标量子查询,所以 Evaluator 又会调用 Executor 计算标量子查询的结果。
这种 Executor - Evaluator - Executor 的交替调用十分低效!考虑到 Filter 上可能会有上百万行数据经过,如果为每行数据都执行一次子查询,那查询执行的总时长显然是不可接受的。
Apply 算子
上文说到的 Relation - Expression - Relation 这种交替引用不仅执行性能堪忧,而且,对于优化器也是个麻烦的存在——我们的优化规则都是在匹配并且对 Relation 进行变换,而这里的子查询却藏在 Expression 里,令人无从下手。
为此,在开始去关联化之前,我们引入 Apply 算子:
Apply 算子(也称作 Correlated Join)接收两个关系树的输入,与一般 Join 不同的是,Apply 的 Inner 输入(图中是右子树)是一个带有参数的关系树。
Apply 的含义用下图右半部分的集合表达式定义:对于 Outer Relation RR 中的每一条数据 rr,计算 Inner Relation E(r)E(r),输出它们连接(Join)起来的结果 r⊗E(r)r⊗E(r)。Apply 的结果是所有这些结果的并集(本文中说的并集指的是 Bag 语义下的并集,也就是 UNION ALL)。
Apply 是 SQL Server 的命名,它在 HyPer 的文章中叫做 Correlated Join。它们是完全等价的。考虑到 SQL Server 的文章发表更早、影响更广,本文中都沿用它的命名。
根据连接方式(⊗⊗)的不同,Apply 又有 4 种形式:
Cross Apply A×A×:这是最基本的形式,行为刚刚我们已经描述过了;
Left Outer Apply ALOJALOJ:即使 E(r)E(r) 为空,也生成一个 r∘{NULLs}r∘{NULLs}。
Semi Apply A∃A∃:如果 E(r)E(r) 不为空则返回 rr,否则丢弃;
Anti-Semi Apply A∄A∄:如果 E(r)E(r) 为空则返回 rr,否则丢弃;
我们用刚刚定义的 Apply 算子来改写之前的例子:把子查询从 Expression 内部提取出来。结果如下:
上面的例子中,我们可以肯定 Scalar Agg 子查询有且只有一行结果,所以可以直接转成 Apply。但某些情况下,可能无法肯定子查询一定能返回 0 或 1 行结果(例如,想象一下 Query 2 如果 c_custkey 不是唯一的),为了确保 SQL 语义,还要在 Apply 右边加一个 Max1RowMax1Row 算子:
Max1Row(E)=⎧⎩⎨Null,E,error,if |E|=0if |E|=1otherwiseMax1Row(E)={Null,if |E|=0E,if |E|=1error,otherwise
理论上,我们可以将所有的子查询转换成 Apply 算子,一个通用的方法如下:
如果某个算子的表达式中出现了子查询,我们就把这个子查询提取到该算子下面(留下一个子查询的结果变量),构成一个 ALOJALOJ 算子。如果不止一个子查询,则会产生多个 ALOJALOJ。必要的时候加上 Max1RowMax1Row 算子。
然后应用其他一些规则,将 ALOJALOJ 转换成 A×A×、A∃A∃、A∄A∄。例如上面例子中的子查询结果 XX 被用作 Filter 的过滤条件,NULL 值会被过滤掉,因此可以安全地转换成 A×A×。
下面这个例子中,Filter 条件表达式中包含 Q1Q1、Q2Q2 两个子查询。转换之后分别生成了对应的 Apply 算子。其中 Q2Q2 无法确定只会生成恰好一条记录,所以还加上了 Max1RowMax1Row 算子。
基本消除规则
第一组规则是最基本的规则,等式中的 ⊗⊗ 说明它不限制连接类型,可以是 {×,LOJ,∃,∄}{×,LOJ,∃,∄} 中的任意一个。
这两条规则是非常显而易见的,翻译成大白话就是:如果 Apply 的右边不包含来自左边的参数,那它就和直接 Join 是等价的。
下面是对 Query 3 应用规则 (2) 的例子:
Project 和 Filter 的去关联化
第二组规则描述了如何处理子查询中的 Project 和 Filter,其思想可以用一句话来描述:尽可能把 Apply 往下推、把 Apply 下面的算子向上提。
注意这些规则仅处理 Cross Apply 这一种情况。其他 3 种 Apply 的变体,理论上都可以转换成 Cross Apply,暂时我们只要知道这个事实就可以了。
你可能会问:通常我们都是尽可能把 Filter、Project 往下推,为什么这里会反其道而行呢?关键在于:Filter、Project 里面原本包含了带有关联变量的表达式,但是把它提到 Apply 上方之后,关联变量就变成普通变量了!这正是我们想要的。
我们稍后就会看到这样做的巨大收益:当 Apply 被推最下面时,就可以应用第一组规则,直接把 Apply 变成 Join,也就完成了子查询去关联化的优化过程。
下面是对 Query 2 应用规则 (3) 的例子。之后再应用规则 (1),就完成了去关联化过程。
Aggregate 的去关联化
第三组规则描述如何处理子查询中的 Aggregate(即 Group By)。和上一组一样,我们的指导思想仍然是:尽可能把 Apply 往下推、把 Apply 下面的算子向上提。
下面等式中,GA,FGA,F 表示带有 Group By 分组的聚合(Group Agg),其中 AA 表示分组的列,FF 表示聚合函数的列;G1FGF1 表示不带有分组的聚合(Scalar Agg)。
这一组规则不像之前那么简单直白,我们先看一个例子找找感觉。下面是对 Query 1 运用规则 (9) 的结果:
规则 (9) 在下推 Apply 的同时,还将 ScalarAgg 变成了 GroupAgg,其中,分组列就是 R 的 key,在这里也就是 CUSTOMER 的主键 c_custkey。
如果 R 没有主键或唯一键,理论上,我们可以在 Scan 时生成一个。
为什么变换前后是等价的呢?变换前,我们是给每个 R 的行做了一次 ScalarAgg 聚合计算,然后再把聚合的结果合并起来;变换后,我们先是将所有要聚合的数据准备好(这被称为 augment),然后使用 GroupAgg 一次性地做完所有聚合。
这也解释了为什么我们要用 ALOJALOJ 而不是原本的 A×A× :原来的 ScalarAgg 上,即使输入是空集,也会输出一个 NULL。如果我们这里用 ALOJALOJ,恰好也会得到一样的行为(*);反之,如果用 A×A× 就有问题了——没有对应 ORDERS 的客户在结果中消失了!
规则 (8) 处理的是 GroupAgg,道理也是一样的,只不过原来的分组列也要留着。
ScalarAgg 转换中的细节*
细心的读者可能注意到,规则 (9) 右边产生的聚合函数是 F′F′,多了一个单引号,这暗示它和原来的聚合函数 FF 可能是有些不同的。那什么情况下会不同呢?这个话题比较深入了,不感兴趣的同学可以跳过。
首先我们思考下,GroupAgg 以及 ALOJALOJ 的行为真的和变换前一模一样吗?其实不然。举个反例:
设想一下:客户 Eric 没有任何订单,那么这个查询应当返回一个 ['Eric', 0]
的行。但是,当我们应用了规则 (9) 做变换之后,却得到了一个 ['Eric', 1]
的值,结果出错了!
为何会这样呢?变换之后,我们是先用 LeftOuterJoin 准备好中间数据(augment),然后用 GroupAgg 做聚合。LeftOuterJoin 为客户 Eric 生成了一个 ['Eric', NULL, NULL, ...]
的行;之后的 GroupAgg 中,聚合函数 COUNT(*)
认为 Eric 这个分组有 1 行数据,所以输出了 ['Eric', 1]
。
下面是个更复杂的例子,也有类似的问题:
作为总结,问题的根源在于:F(∅)≠F({NULL})F(∅)≠F({NULL}),这样的聚合函数 FF 都有这个问题。
变换后的 GroupAgg 无法区分它看到的 NULL 数据到底是 OuterJoin 产生的,还是原本就存在的,有时候,这两种情形在变换前的 ScalarAgg 中会产生不同的结果。
幸运的是,SQL 标准中定义的聚合函数 F(col)F(col) 都是 OK 的——它们都满足 F(∅)=F({NULL})F(∅)=F({NULL}),我们只要对 FF 稍加变换就能解决这个问题。
对于例子一,将
COUNT(*)
替换成一个对非空列(例如主键)的 Count 即可,例如:COUNT(o_orderkey)
;对于例子二,需要把
MIN(IF_NULL(o_totalprice, 42))
分成两步来做:定义中间变量X
,先用 Project 计算X = IF_NULL(o_totalprice, 42)
,再对聚合函数MIN(X)
进行去关联化即可。
集合运算的去关联化
最后一组优化规则用来处理带有 Union(对应 UNION ALL
)、Subtract(对应 EXCEPT ALL
) 和 Inner Join 算子的子查询。再强调一遍,我们的指导思想是:尽可能把 Apply 往下推、把 Apply 下面的算子向上提。
下面的等式中,×× 表示 Cross Join,⋈R.key⋈R.key 表示按照 RR 的 Key 做自然连接:r∘e1∘e2r∘e1∘e2 。和之前一样,我们假设 RR 存在主键或唯一键,如果没有也可以在 Scan 的时候加上一个。
注意到,这些规则与之前我们见过的规则有个显著的不同:等式右边 RR 出现了两次。这样一来,要么我们把这颗子树拷贝一份,要么做成一个 DAG 的执行计划,总之会麻烦许多。
事实上,这一组规则很少能派上用场。在 [2] 中提到,在 TPC-H 的 Schema 下甚至很难写出一个带有 Union All 的、有意义的子查询。
其他
有几个我认为比较重要的点,用 FAQ 的形式列在下面。
► 是否任意的关联子查询都可以被去关联化?
可以说是这样的,在加上少量限定之后,理论上可以证明:任意的关联子查询都可以被去关联化。
证明方法在 [1]、[3] 中都有提及。以 [1] 中为例,思路大致是:
对于任意的查询关系树,首先将关联子查询从表达式中提取出来,用 Apply 算子表示;
一步步去掉其中非基本关系算子,首先,通过等价变换去掉 Union 和 Subtract;
进一步缩小算子集合,去掉 OuterJoin、ALOJALOJ、A∃A∃、A∄A∄;
最后,去掉所有的 A×A×,剩下的关系树仅包含基本的一些关系算子,即完成了去关联化。
另一方面,现实世界中用户使用的子查询大多是比较简单的,本文中描述的这些规则可能已经覆盖到 99% 的场景。虽然理论上任意子查询都可以处理,但是实际上,没有任何一个已知的 DBMS 实现了所有这些变换规则。
► HyPer 和 SQL Server 的做法有什么异同?
HyPer 的理论覆盖了更多的去关联化场景。例如各种 Join 等算子,[3] 中都给出了相应的等价变换规则(作为例子,下图是对 Outer Join 的变换)。而在 [1] 中仅仅是证明了这些情况都可以被规约到可处理的情形(实际上嘛,可想而知,一定是没有处理的)。
另一个细节是,HyPer 中还存在这样一条规则:
其中,D=ΠF(T2)∩A(T1)(T1)D=ΠF(T2)∩A(T1)(T1),表示对 T1T1 的 Distinct Project 结果(所谓的 Magic Set)。直接看等式比较晦涩,看下面的例子就容易理解了:
图中,在做 Apply 之前,先拿到需要 Apply 的列的 Distinct 值集合,拿这些值做 Apply,之后再用普通的 Join 把 Apply 的结果连接上去。
这样做的好处是:如果被 Apply 的数据存在大量重复,则 Distinct Project 之后需要 Apply 的行数大大减少。这样一来,即使之后 Apply 没有被优化掉,迭代执行的代价也会减小不少。
► 本文说的这些变换规则,应该用在 RBO 还是 CBO 中呢?换句话说,去关联化后之后的执行计划一定比去关联化之前更好吗?
答案是,不一定。
直观的看,如果 Apply 的左边数据量比较少(例如,仅有 1 条数据),那直接带入 Apply 的右边计算反而是更好的方式。另一种情况是,右边有合适的索引,这种情况下,多次 Apply 的代价也并非不可接受。
所以把这些规则放进一个 CBO 的优化器是更合适的,优化器根据代价估计选出最优的计划来。甚至,在某些情况下,我们还会自右向左地运用这些等式,做“加关联化”。
这和用 HashJoin 还是 NestedLoopJoin 是同样的道理。事实上,NestedLoopJoin 就是 Apply 的一个特例。如果存在合适的索引,NestedLoopJoin 效率高于 HashJoin 是很常见的事情。
评论