写点什么

深入了解 HashMap!

用户头像
xcbeyond
关注
发布于: 2021 年 01 月 26 日
深入了解HashMap!

HashMap 的扩容机制是要必懂知识!结合图片一起理解!


什么是 HashMap?

HashMap 是基于哈希表的 Map 接口的非同步实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。


HashMap 的数据结构 在 Java 编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap 也不例外。HashMap 实际上是一个 “链表散列” 的数据结构,即数组和链表的结合体。


文字描述永远要配上图才能更好的讲解数据结构,HashMap 的结构图如下。 

从上图中可以看出,HashMap 底层就是一个数组结构,数组中的每一项又是一个链表或者红黑树。当新建一个 HashMap 的时候,就会初始化一个数组。

下面先通过大概看下 HashMap 的核心成员。

public class HashMap<K,V> extends AbstractMap<K,V>    implements Map<K,V>, Cloneable, Serializable {
// 默认容量,默认为16,必须是2的幂 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量,值是2^30 static final int MAXIMUM_CAPACITY = 1 << 30
// 装载因子,默认的装载因子是0.75 static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 解决冲突的数据结构由链表转换成树的阈值,默认为8 static final int TREEIFY_THRESHOLD = 8;
// 解决冲突的数据结构由树转换成链表的阈值,默认为6 static final int UNTREEIFY_THRESHOLD = 6;
/* 当桶中的bin被树化时最小的hash表容量。 * 如果没有达到这个阈值,即hash表容量小于MIN_TREEIFY_CAPACITY,当桶中bin的数量太多时会执行resize扩容操作。 * 这个MIN_TREEIFY_CAPACITY的值至少是TREEIFY_THRESHOLD的4倍。 */ static final int MIN_TREEIFY_CAPACITY = 64;
static class Node<K,V> implements Map.Entry<K,V> { //... } // 存储数据的数组 transient Node<K,V>[] table;
// 遍历的容器 transient Set<Map.Entry<K,V>> entrySet;
// Map中KEY-VALUE的数量 transient int size;
/** * 结构性变更的次数。 * 结构性变更是指map的元素数量的变化,比如rehash操作。 * 用于HashMap快速失败操作,比如在遍历时发生了结构性变更,就会抛出ConcurrentModificationException。 */ transient int modCount;
// 下次resize的操作的size值。 int threshold;
// 负载因子,resize后容量的大小会增加现有size * loadFactor final float loadFactor;}
复制代码


HashMap 的初始化

public HashMap() {        this.loadFactor = DEFAULT_LOAD_FACTOR; // 其他值都是默认值}
复制代码


通过源码可以看出初始化时并没有初始化数组 table,那只能在 put 操作时放入了,为什么要这样做?估计是避免初始化了 HashMap 之后不使用反而占用内存吧,哈哈哈。

HashMap 的存储操作


public V put(K key, V value) {        return putVal(hash(key), key, value, false, true);}
复制代码


下面我们详细讲一下 HashMap 是如何确定数组索引的位置、进行 put 操作的详细过程以及扩容机制 (resize)

hash 计算,确定数组索引位置

不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过 HashMap 的数据结构是数组和链表的结合,所以我们当然希望这个 HashMap 里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用 hash 算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap 定位数组索引位置,直接决定了 hash 方法的离散性能。

看下源码的实现:

static final int hash(Object key) { //jdk1.8     int h;     // h = key.hashCode() 为第一步 取hashCode值     // h ^ (h >>> 16) 为第二步 高位参与运算     return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);}
复制代码


通过 hashCode() 的高 16 位异或低 16 位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组 table 的 length 比较小的时候,也能保证考虑到高低 Bit 都参与到 Hash 的计算中,同时不会有太大的开销。


大家都知道上面代码里的 key.hashCode() 函数调用的是 key 键值类型自带的哈希函数,返回 int 型散列值。理论上散列值是一个 int 型,如果直接拿散列值作为下标访问 HashMap 主数组的话,考虑到 2 进制 32 位带符号的 int 表值范围从‑2147483648 到 2147483648。前后加起来大概 40 亿的映射空间。


只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。但问题是一个 40 亿长度的数组,内存是放不下的。你想,HashMap 扩容之前的数组初始大小才 16。所以这个散列值是不能直接拿来用的。用之前还要先做对数组的长度取模运算,得到的余数才能用来访问数组下标。源码中模运算是在这个 indexFor( ) 函数里完成。

bucketIndex = indexFor(hash, table.length);//indexFor的代码也很简单,就是把散列值和数组长度做一个"与"操作,static int indexFor(int h, int length) {   return h & (length-1);}
复制代码


顺便说一下,这也正好解释了为什么 HashMap 的数组长度要取 2 的整次幂。因为这样(数组长度‑1)正好相当于一个 “低位掩码”。“与” 操作的结果就是散列值的高位全部归零,只保留低位值,用来做数组下标访问。以初始长度 16 为例,16‑1=15。2 进制表示是 00000000 0000000000001111。和某散列值做 “与” 操作如下,结果就是截取了最低的四位值。

10100101 11000100 00100101& 00000000 00000000 00001111----------------------------------  00000000 00000000 00000101 //高位全部归零,只保留末四位
复制代码

但这时候问题就来了,这样就算我的散列值分布再松散,要是只取最后几位的话,碰撞也会很严重。更要命的是如果散列本身做得不好,分布上成等差数列的漏洞,恰好使最后几个低位呈现规律性重复,就无比蛋疼。这时候 “扰动函数” 的价值就出来了,说到这大家应该都明白了,看下图。 

右位移 16 位,正好是 32bit 的一半,自己的高半区和低半区做异或,就是为了混合原始哈希码的高位和低位,以此来加大低位的随机性。而且混合后的低位掺杂了高位的部分特征,这样高位的信息也被变相保留下来。

putVal 方法

HashMap 的 put 方法执行过程可以通过下图来理解,自己有兴趣可以去对比源码更清楚地研究学习。 

源码以及解释如下:

// 真正的put操作    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                   boolean evict) {        Node<K,V>[] tab; Node<K,V> p; int n, i;        // 如果table没有初始化,或者初始化的大小为0,进行resize操作        if ((tab = table) == null || (n = tab.length) == 0)            n = (tab = resize()).length;        // 如果hash值对应的桶内没有数据,直接生成结点并且把结点放入桶中        if ((p = tab[i = (n - 1) & hash]) == null)            tab[i] = newNode(hash, key, value, null);        // 如果hash值对应的桶内有数据解决冲突,再放入桶中        else {            Node<K,V> e; K k;            //判断put的元素和已经存在的元素是相同(hash一致,并且equals返回true)            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                e = p;            // put的元素和已经存在的元素是不相同(hash一致,并且equals返回true)            // 如果桶内元素的类型是TreeNode,也就是解决hash解决冲突用的树型结构,把元素放入树种            else if (p instanceof TreeNode)                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);            else {                // 桶内元素的类型不是TreeNode,而是链表时,把数据放入链表的最后一个元素上                for (int binCount = 0; ; ++binCount) {                    if ((e = p.next) == null) {                        p.next = newNode(hash, key, value, null);                        // 如果链表的长度大于转换为树的阈值(TREEIFY_THRESHOLD),将存储元素的数据结构变更为树                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                            treeifyBin(tab, hash);                        break;                    }                    // 如果查已经存在key,停止遍历                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        break;                    p = e;                }            }            // 已经存在元素时            if (e != null) { // existing mapping for key                V oldValue = e.value;                if (!onlyIfAbsent || oldValue == null)                    e.value = value;                afterNodeAccess(e);                return oldValue;            }        }        ++modCount;        // 如果K-V数量大于阈值,进行resize操作        if (++size > threshold)            resize();        afterNodeInsertion(evict);        return null;    }
复制代码


扩容机制

HashMap 的扩容机制用的很巧妙,以最小的性能来完成扩容。扩容后的容量就变成了变成了之前容量的 2 倍,初始容量为 16,所以经过 rehash 之后,元素的位置要么是在原位置,要么是在原位置再向高下标移动上次容量次数的位置,也就是说如果上次容量是 16,下次扩容后容量变成了 16+16,如果一个元素在下标为 7 的位置,下次扩容时,要不还在 7 的位置,要不在 7+16 的位置。

我们下面来解释一下 Java8 的扩容机制是怎么做到的?n 为 table 的长度,图(a)表示扩容前的 key1 和 key2 两种 key 确定索引位置的示例,图(b)表示扩容后 key1 和 key2 两种 key 确定索引位置的示例,其中 hash1 是 key1 对应的哈希与高位运算结果。 

元素在重新计算 hash 之后,因为 n 变为 2 倍,那么 n-1 的 mask 范围在高位多 1bit(红色),因此新的 index 就会发生这样的变化: 

因此,我们在扩充 HashMap 的时候,不需要像 JDK1.7 的实现那样重新计算 hash,只需要看看原来的 hash 值新增的那个 bit 是 1 还是 0 就好了,是 0 的话索引没变,是 1 的话索引变成 “原索引 + oldCap”,可以看看下图为 16 扩充为 32 的 resize 示意图: 

而 hash 值的高位是否为 1,只需要和扩容后的长度做与操作就可以了,因为扩容后的长度为 2 的次幂,所以高位必为 1,低位必为 0,如 10000 这种形式,源码中有 e.hash & oldCap 来做到这个逻辑。


这个设计确实非常的巧妙,既省去了重新计算 hash 值的时间,而且同时,由于新增的 1bit 是 0 还是 1 可以认为是随机的,因此 resize 的过程,均匀的把之前的冲突的节点分散到新的 bucket 了。这一块就是 JDK1.8 新增的优化点。有一点注意区别,JDK1.7 中 rehash 的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8 不会倒置。下面是 JDK1.8 的 resize 源码,写的很赞,如下:

final Node<K,V>[] resize() {        Node<K,V>[] oldTab = table;        int oldCap = (oldTab == null) ? 0 : oldTab.length;        int oldThr = threshold;        int newCap, newThr = 0;        // 计算新的容量值和下一次要扩展的容量        if (oldCap > 0) {        // 超过最大值就不再扩充了,就只好随你碰撞去吧            if (oldCap >= MAXIMUM_CAPACITY) {                threshold = Integer.MAX_VALUE;                return oldTab;            }            // 没超过最大值,就扩充为原来的2倍            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&                     oldCap >= DEFAULT_INITIAL_CAPACITY)                newThr = oldThr << 1; // double threshold        }        else if (oldThr > 0) // initial capacity was placed in threshold            newCap = oldThr;        else { // zero initial threshold signifies using defaults            newCap = DEFAULT_INITIAL_CAPACITY;            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);        }        // 计算新的resize上限        if (newThr == 0) {            float ft = (float)newCap * loadFactor;            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?                      (int)ft : Integer.MAX_VALUE);        }        threshold = newThr;        @SuppressWarnings({"rawtypes","unchecked"})            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];        table = newTab;        if (oldTab != null) {            // 把每个bucket都移动到新的buckets中            for (int j = 0; j < oldCap; ++j) {                Node<K,V> e;                //如果位置上没有元素,直接为null                if ((e = oldTab[j]) != null) {                    oldTab[j] = null;                    //如果只有一个元素,新的hash计算后放入新的数组中                    if (e.next == null)                        newTab[e.hash & (newCap - 1)] = e;                    //如果是树状结构,使用红黑树保存                    else if (e instanceof TreeNode)                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);                    //如果是链表形式                    else { // preserve order                        Node<K,V> loHead = null, loTail = null;                        Node<K,V> hiHead = null, hiTail = null;                        Node<K,V> next;                        do {                            next = e.next;                            //hash碰撞后高位为0,放入低Hash值的链表中                            if ((e.hash & oldCap) == 0) {                                if (loTail == null)                                    loHead = e;                                else                                    loTail.next = e;                                loTail = e;                            }                            //hash碰撞后高位为1,放入高Hash值的链表中                            else {                                if (hiTail == null)                                    hiHead = e;                                else                                    hiTail.next = e;                                hiTail = e;                            }                        } while ((e = next) != null);                        // 低hash值的链表放入数组的原始位置                        if (loTail != null) {                            loTail.next = null;                            newTab[j] = loHead;                        }                        // 高hash值的链表放入数组的原始位置 + 原始容量                        if (hiTail != null) {                            hiTail.next = null;                            newTab[j + oldCap] = hiHead;                        }                    }                }            }        }        return newTab;    }
复制代码


用户头像

xcbeyond

关注

不为别的,只为技术沉淀、分享。 2019.06.20 加入

公众号:程序猿技术大咖,专注于技术输出、分享。

评论

发布
暂无评论
深入了解HashMap!