前言
今天给大家分享一个面试中经常会被问到的拉链表
,我在上篇文章中提出来一个需求如果不知道的请去→数仓缓慢变化维深层讲解查看,好,废话不多说我们直接开始。提出的问题会在末尾讲解。
一、拉链表介绍(百度百科)
拉链表:维护历史状态,以及最新状态数据的一种表,拉链表根据拉链粒度的不同,实际上相当于快照,只不过做了优化,去除了一部分不变的记录,通过拉链表可以很方便的还原出拉链时点的客户记录
二、拉链表场景
数据仓库的数据模型设计过程中,经常会遇到这样的需求:
表中的部分字段会被 update,例如:
用户的地址,产品的描述信息,品牌信息等等;
需要查看某一个时间点或者时间段的历史快照信息
,例如:
查看某一个产品在历史某一时间点的状态
查看某一个用户在过去某一段时间内,更新过几次等等
变化的比例和频率不是很大
,例如:
总共有 1000 万的会员,每天新增和发生变化的有 10 万左右
三、商品数据案例
需求:
商品表:
2019年12月20日
的数据如下所示:
商品的状态,会随着时间推移而变化, 我们需要将商品的所有变化的历史信息都保存下来。如何实现呢?
方案一: 快照每一天的数据到数仓(图解)
该方案为:
12 月 20 日(4 条数据)
12 月 21 日(10 条数据)
12 月 22 日(18 条数据)
方案一: MySQL 到,MySQL 数仓代码实现
MySQL 初始化
在 MySQL 中zw
库和商品表
用于到原始数据层
-- 创建数据库
create database if not exists zw;
-- 创建商品表
create table if not exists `zw`.`t_product`(
goods_id varchar(50), -- 商品编号
goods_status varchar(50), -- 商品状态
createtime varchar(50), -- 商品创建时间
modifytime varchar(50) -- 商品修改时间
);
复制代码
在 MySQL 中创建 ods 和 dw 层 模拟数仓
-- ods创建商品表
create table if not exists `zw`.`ods_t_product`(
goods_id varchar(50), -- 商品编号
goods_status varchar(50), -- 商品状态
createtime varchar(50), -- 商品创建时间
modifytime varchar(50), -- 商品修改时间
cdat varchar(10) --模拟hive分区
)default character set = 'utf8'; ;
-- dw创建商品表
create table if not exists `zw`.`dw_t_product`(
goods_id varchar(50), -- 商品编号
goods_status varchar(50), -- 商品状态
createtime varchar(50), -- 商品创建时间
modifytime varchar(50), -- 商品修改时间
cdat varchar(10) -- 模拟hive分区
)default character set = 'utf8'; ;
复制代码
增量导入 12 月 20 号数据
1. 原始数据导入 12 月 20 号数据(4 条)
insert into `zw`.`t_product`(goods_id, goods_status, createtime, modifytime) values
('001', '待审核', '2019-12-18', '2019-12-20'),
('002', '待售', '2019-12-19', '2019-12-20'),
('003', '在售', '2019-12-20', '2019-12-20'),
('004', '已删除', '2019-12-15', '2019-12-20');
复制代码
注意: 由于我这里使用的MySQL来模拟的数仓在这里偷个懒直接使用insert into的方式导入数据,在企业中可能会使用hive来做数仓使用kettle 或者sqoop或datax等来同步数据
# 从原始数据层导入到ods 层
insert into zw.ods_t_product
select *,'20191220' from zw.t_product ;
# 从ods同步到dw层
insert into zw.dw_t_product
select * from zw.ods_t_product where cdat='20191220';
复制代码
增量导入 12 月 21 数据
原始数据层导入 12 月 21 日数据(6 条数据)
UPDATE `zw`.`t_product` SET goods_status = '待售', modifytime = '2019-12-21' WHERE goods_id = '001';
INSERT INTO `zw`.`t_product`(goods_id, goods_status, createtime, modifytime) VALUES
('005', '待审核', '2019-12-21', '2019-12-21'),
('006', '待审核', '2019-12-21', '2019-12-21');
复制代码
将数据导入到 ods 层与 dw 层
# 从原始数据层导入到ods 层
insert into zw.ods_t_product
select *,'20191221' from zw.t_product ;
# 从ods同步到dw层
insert into zw.dw_t_product
select * from zw.ods_t_product where cdat='20191221';
复制代码
查看 dw 层的运行结果
select * from zw.dw_t_product where cdat='20191221';
复制代码
增量导入 12 月 22 日数据
原始数据层导入 12 月 22 日数据(6 条数据)
UPDATE `zw`.`t_product` SET goods_status = '已删除', modifytime = '2019-12-22' WHERE goods_id = '003';
UPDATE `zw`.`t_product` SET goods_status = '已删除', modifytime = '2019-12-22' WHERE goods_id = '006';
INSERT INTO `zw`.`t_product`(goods_id, goods_status, createtime, modifytime) VALUES
('007', '待审核', '2019-12-22', '2019-12-22'),
('008', '待审核', '2019-12-22', '2019-12-22');
复制代码
将数据导入到 ods 层与 dw 层
# 从原始数据层导入到ods 层
insert into zw.ods_t_product
select *,'20191222' from zw.t_product ;
# 从ods同步到dw层
insert into zw.dw_t_productpeizhiwenjian
select * from zw.ods_t_product where cdat='20191222';
复制代码
查看 dw 层的运行结果
select * from zw.dw_t_product where cdat='20191222';
复制代码
从上述案例,可以看到:
表每天
保留一份全量
,每次全量中会保存很多不变的信息
,如果数据量很大的话,对存储是极大的浪费
可以讲表设计为拉链表
,既能满足反应数据的历史状态,又可以最大限度地节省存储空间。
方案二: 使用拉链表保存历史快照(思路/图解)
12 月 20 日商品拉链表的数据:
12 月 20 日的数据是全新的数据导入到 dw 表
dwstartdate 表示某一条数据的生命周期起始时间,即数据从该时间开始有效(即生效日期
)
dwenddate 表示某一条数据的生命周期结束时间,即数据到这一天(不包含)(即失效日期
)
dwenddate 为9999-12-31
,表示当前这条数据是最新的数据,数据到 9999-12-31 才过期
12 月 21 日商品拉链表的数据
12 月 21 日商品拉链表的数据
拉链表中没有存储冗余的数据,(只要数据没有变化,无需同步
)
001 编号的商品数据的状态发生了变化(从待审核
→ 待售
),需要将原有的 dw_end_date 从 9999-12-31 变为 2019-12-21,表示待审核状态,在2019/12/20(包含) - 2019/12/21(不包含)
有效
001 编号新的状态重新保存了一条记录,dw_start_date 为 2019/12/21,dw_end_date 为 9999/12/31
新数据 005、006、dwstartdate 为 2019/12/21,dwenddate 为 9999/12/31
12 月 22 日商品拉链表的数据
12 月 22 日商品拉链表的数据
003 编号的商品数据的状态发生了变化(从在售→已删除
),需要将原有的 dw_end_date 从 9999-12-31 变为 2019-12-22,表示在售状态,在 2019/12/20(包含) - 2019/12/22(不包含) 有效
003 编号新的状态重新保存了一条记录,dwstartdate 为 2019/12/22,dwenddate 为 9999/12/31
新数据 007、008、dwstartdate 为 2019/12/22,dwenddate 为 9999/12/31
方案二: 拉链表快照代码实现
操作流程:
在原有 dw 层表上,添加额外的两列
只同步当天修改的数据到 ods 层
拉链表算法实现
拉链表的数据为:当天最新的数据 UNION ALL 历史数据
代码实现:
在 MySQL 中zw
库和商品表
用于到原始数据层
-- 创建数据库
create database if not exists zw;
-- 创建商品表
create table if not exists `zw`.`t_product_2`(
goods_id varchar(50), -- 商品编号
goods_status varchar(50), -- 商品状态
createtime varchar(50), -- 商品创建时间
modifytime varchar(50) -- 商品修改时间
)default character set = 'utf8';
复制代码
在 MySQL 中创建 ods 和 dw 层 模拟数仓
-- ods创建商品表
create table if not exists `zw`.`ods_t_product2`(
goods_id varchar(50), -- 商品编号
goods_status varchar(50), -- 商品状态
createtime varchar(50), -- 商品创建时间
modifytime varchar(50), -- 商品修改时间
cdat varchar(10) -- 模拟hive分区
)default character set = 'utf8';
-- dw创建商品表
create table if not exists `zw`.`dw_t_product2`(
goods_id varchar(50), -- 商品编号
goods_status varchar(50), -- 商品状态
createtime varchar(50), -- 商品创建时间
modifytime varchar(50), -- 商品修改时间
dw_start_date varchar(12), -- 生效日期
dw_end_date varchar(12), -- 失效时间
cdat varchar(10) -- 模拟hive分区
)default character set = 'utf8';
复制代码
全量导入 2019 年 12 月 20 日数据
原始数据层导入 12 月 20 日数据(4 条数据)
insert into zw.t_product_2(goodsid, goodsstatus, createtime, modifytime) values
('001', '待审核', '2019-12-18', '2019-12-20'),
('002', '待售', '2019-12-19', '2019-12-20'),
003', '在售', '2019-12-20', '2019-12-20'),
('004', '已删除', '2019-12-15', '2019-12-20');
2. 将数据导入到数仓中的ods层
```sql
insert into zw.ods_t_product2
select *,'20191220' from zw.t_product_2 where modifytime >='2019-12-20'
复制代码
将数据从 ods 层导入到 dw 层
```sql
insert into zw.dwtproduct2
select goodsid, goodsstatus, createtime, modifytime, modifytime,'9999-12-31', cdat from zw.odstproduct2 where cdat='20191220'
**增量导入2019年12月21日数据**
1. 原始数据层导入12月21日数据(6条数据)
```sql
UPDATE `zw`.`t_product_2` SET goods_status = '待售', modifytime = '2019-12-21' WHERE goods_id = '001';
INSERT INTO `zw`.`t_product_2`(goods_id, goods_status, createtime, modifytime) VALUES
('005', '待审核', '2019-12-21', '2019-12-21'),
('006', '待审核', '2019-12-21', '2019-12-21');
复制代码
原始数据层同步到 ods 层
insert into zw.ods_t_product2
select *,'20191221' from zw.t_product_2 where modifytime >='2019-12-21';
复制代码
编写 ods 层到 dw 层重新计算 dwenddate
注意: 我这里直接将结果的 SQL 语句放在这里语句 因为需要将覆盖写入到数据库中我这里就没有写了,但是不影响我们结果。12月22 号的操作流程跟21 一样我就里就不写了
select t1.goodsid, t1.goodsstatus, t1.createtime, t1.modifytime,
t1.dwstartdate,
case when (t2.goodsid is not null and t1.dwend_date>'2019-12-21') then '2019-12-21'else t1.dw__date end as end ,
t1.cdat
from zw.dwtproduct2 t1
left join (select * from zw.odstproduct2 where cdat='20191221')t2 on t1.goodsid=t2.goodsid
union
select goodsid, goodsstatus, createtime, modifytime, modifytime,'9999-12-31', cdat from zw.odstproduct2 where cdat='20191221'
复制代码
查询结果
## 总结
到这里我们终于将拉链表实现完了,虽然实现拉链表这个功能有点复杂有点绕,但是它真的帮助我们节省很多的资源,以公司层面难道不选它吗,也就为什么面试数仓的时候基本上都会问拉链表的原因。很多小伙伴对dw_start_date
与ds_end_date
有疑惑我们可以在评论区一起讨论。信自己,努力和汗水总会能得到回报的。我是大数据老哥,我们下期见~~~
>获取 Flink 面试题,Spark 面试题,程序员必备软件,hive 面试题,Hadoop 面试题,Docker 面试题,简历模板等资源请去 GitHub 自行下载 https://github.com/lhh2002/Framework-Of-BigData
评论