写点什么

PC 人脸识别登录,出乎意料的简单

发布于: 2020 年 07 月 29 日
PC人脸识别登录,出乎意料的简单

>本文收录在个人博客:www.chengxy-nds.top,技术资源共享。


之前不是做了个开源项目嘛,在做完GitHub登录后,想着再显得有逼格一点,说要再加个人脸识别登录,就我这佛系的开发进度,过了一周总算是抽时间安排上了。


源码在文末


其实最近对写文章有点小抵触,写的东西没人看,总有点小失落,好在有同行大佬们的开导让我重拾了信心。调整了自己的心态,只要我分享的东西对大家有帮助就好,至于多少人看那就随缘吧!


废话不多说先看人脸识别效果动态,马赛克有点重哈,没办法长相实在是拿不出手。


实现原理

我们看一下实现人脸识别登录的大致流程,三个主要步骤:



1. 前端登录页打开摄像头,进行人脸识别,注意:只识别画面中是不是有人脸

2. 识别到人脸后,拍照上传当前画面图片

3. 后端接受图片并调用人脸库 SDK,对人像进行比对,通过则登录成功,并将人像信息注册到人脸库和本地mysql


前端实现


上边说过要在前端识别到人脸,所以这里就不得不借助工具了,我使用的 tracking.js,一款轻量级的前端人脸识别框架。


前端 Vue 代码实现逻辑比较简单,tracking.js 打开摄像头识别到人脸信息后,对视频图像拍照,将图片信息上传到后台,等待图片对比的结果就可以了。


data() {        return {            showContainer: true,   // 显示            tracker: null,            tipFlag: false,         // 提示用户已经检测到            flag: false,            // 判断是否已经拍照            context: null,          // canvas上下文            removePhotoID: null,    // 停止转换图片            scanTip: '人脸识别中...',// 提示文字            imgUrl: '',              // base64格式图片            canvas: null        }    },    mounted() {        this.playVideo()    },    methods: {
playVideo() { var video = document.getElementById('video'); this.canvas = document.getElementById('canvas'); this.context = this.canvas.getContext('2d'); this.tracker = new tracking.ObjectTracker('face'); this.tracker.setInitialScale(4); this.tracker.setStepSize(2); this.tracker.setEdgesDensity(0.1);
tracking.track('#video', this.tracker, {camera: true});
this.tracker.on('track', this.handleTracked); },
handleTracked(event) { this.context.clearRect(0, 0, this.canvas.width, this.canvas.height); if (event.data.length === 0) { this.scanTip = '未识别到人脸' } else { if (!this.tipFlag) { this.scanTip = '识别成功,正在拍照,请勿乱动~' } // 1秒后拍照,仅拍一次 if (!this.flag) { this.scanTip = '拍照中...' this.flag = true this.removePhotoID = setTimeout(() => { this.tackPhoto() this.tipFlag = true }, 2000 ) } event.data.forEach(this.plot); } },
plot(rect){ this.context.strokeStyle = '#eb652e'; this.context.strokeRect(rect.x, rect.y, rect.width, rect.height); this.context.font = '11px Helvetica'; this.context.fillStyle = "#fff"; this.context.fillText('x: ' + rect.x + 'px', rect.x + rect.width + 5, rect.y + 11); this.context.fillText('y: ' + rect.y + 'px', rect.x + rect.width + 5, rect.y + 22); },
// 拍照 tackPhoto() {
this.context.drawImage(this.$refs.refVideo, 0, 0, 500, 500) // 保存为base64格式 this.imgUrl = this.saveAsPNG(this.$refs.refCanvas) var formData = new FormData(); formData.append("file", this.imgUrl); this.scanTip = '登录中,请稍等~'
axios({ method: 'post', url: '/faceDiscern', data: formData, }).then(function (response) { alert(response.data.data); window.location.href="http://127.0.0.1:8081/home"; }).catch(function (error) { console.log(error); });
this.close() },
// 保存为png,base64格式图片 saveAsPNG(c) { return c.toDataURL('image/png', 0.3) },
// 关闭并清理资源 close() { this.flag = false this.tipFlag = false this.showContainer = false this.tracker && this.tracker.removeListener('track', this.handleTracked) && tracking.track('#video', this.tracker, {camera: false}); this.tracker = null this.context = null this.scanTip = '' clearTimeout(this.removePhotoID) } }
复制代码


人脸识别


之前也搞过一个人脸识别案例 《基于 Java 实现的人脸识别功能(附源码)》 ,不过调用 SDK 的方式太过繁琐,而且代码量巨大。所以这次为了简化实现,改用了百度的人脸识别 API,没想到出乎意料的简单。


>别抬杠问我为啥不自己写人脸识别工具,别问,问就是不会


在百度云注册一个应用 https://console.bce.baidu.com/ai/?_=1595996996657&fromai=1#/ai/face/app/list,得到 API KeySecret Key,为了后续获取 token用。



百度云人脸识别的 API 非常友好,各种操作的 demo 都写好了,拿过来简单改改就可以。


第一步先获取token,这是调用百度人脸识别API的基础。


https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=【百度云应用的AK】&client_secret=【百度云应用的SK】
复制代码

接下来我们开始对图片进行比对,百度云提供了一个在线的人脸库,用户登录我们先在人脸库查询人像是否存在,存在则表示登录成功,如果不存在则注册到人脸库。每个图片有一个唯一标识face_token



百度人脸识别 API 实现比较简单,需要特别注意参数image_type,它有三种类型


  • BASE64:图片的 base64 值,base64 编码后的图片数据,编码后的图片大小不超过 2M;

  • URL:图片的 URL地址( 可能由于网络等原因导致下载图片时间过长);

  • FACE_TOKEN:人脸图片的唯一标识,调用人脸检测接口时,会为每个人脸图片赋予一个唯一的

FACE_TOKEN,同一张图片多次检测得到的FACE_TOKEN是同一个。


而我们这里使用的是图片BASE64文件,所以image_type要设置成BASE64


    @Override    public BaiDuFaceSearchResult faceSearch(String file) {
try { byte[] decode = Base64.decode(Base64Util.base64Process(file)); String faceFile = Base64Util.encode(decode);
Map<String, Object> map = new HashMap<>(); map.put("image", faceFile); map.put("liveness_control", "NORMAL"); map.put("group_id_list", "user"); map.put("image_type", "BASE64"); map.put("quality_control", "LOW"); String param = GsonUtils.toJson(map);
String result = HttpUtil.post(faceSearchUrl, this.getAccessToken(), "application/json", param); BaiDuFaceSearchResult searchResult = JSONObject.parseObject(result, BaiDuFaceSearchResult.class); log.info(" faceSearch: {}", JSON.toJSONString(searchResult)); return searchResult; } catch (Exception e) { log.error("get faceSearch error {}", e.getStackTrace()); e.getStackTrace(); } return null; }
@Override public BaiDuFaceDetectResult faceDetect(String file) {
try { byte[] decode = Base64.decode(Base64Util.base64Process(file)); String faceFile = Base64Util.encode(decode);
Map<String, Object> map = new HashMap<>(); map.put("image", faceFile); map.put("face_field", "faceshape,facetype"); map.put("image_type", "BASE64"); String param = GsonUtils.toJson(map);
String result = HttpUtil.post(faceDetectUrl, this.getAccessToken(), "application/json", param); BaiDuFaceDetectResult detectResult = JSONObject.parseObject(result, BaiDuFaceDetectResult.class); log.info(" detectResult: {}", JSON.toJSONString(detectResult)); return detectResult; } catch (Exception e) { log.error("get faceDetect error {}", e.getStackTrace()); e.getStackTrace(); } return null; }
@Override public BaiDuFaceAddResult addFace(String file, UserFaceInfo userFaceInfo) {
try { byte[] decode = Base64.decode(Base64Util.base64Process(file)); String faceFile = Base64Util.encode(decode);
Map<String, Object> map = new HashMap<>(); map.put("image", faceFile); map.put("group_id", "user"); map.put("user_id", userFaceInfo.getUserId()); map.put("user_info", JSON.toJSONString(userFaceInfo)); map.put("liveness_control", "NORMAL"); map.put("image_type", "BASE64"); map.put("quality_control", "LOW"); String param = GsonUtils.toJson(map);
String result = HttpUtil.post(addfaceUrl, this.getAccessToken(), "application/json", param); BaiDuFaceAddResult addResult = JSONObject.parseObject(result, BaiDuFaceAddResult.class); log.info("addResult: {}", JSON.toJSONString(addResult)); return addResult; } catch (Exception e) { log.error("get addFace error {}", e.getStackTrace()); e.getStackTrace(); } return null; }
复制代码


项目是前后端分离的,但为了大家学习方便,我把人脸识别页面整合到了后端项目。


最后 run FireControllerApplication 访问地址:http://localhost:8082/face 即可。


源码GitHub地址:https://github.com/chengxy-nds/fire.git,欢迎大家来耍~


原创不易,燃烧秀发输出内容,如果有一丢丢收获,点个赞鼓励一下吧!


整理了几百本各类技术电子书,送给小伙伴们。关注公号回复【666】自行领取。和一些小伙伴们建了一个技术交流群,一起探讨技术、分享技术资料,旨在共同学习进步,如果感兴趣就加入我们吧!



发布于: 2020 年 07 月 29 日阅读数: 88
用户头像

不积跬步,无以至千里 2018.07.03 加入

公众号-程序员内点事,一个技术传播者

评论

发布
暂无评论
PC人脸识别登录,出乎意料的简单