写点什么

大模型应用之基于 Langchain 的测试用例生成

  • 2024-05-27
    北京
  • 本文字数:3919 字

    阅读完需:约 13 分钟

大模型应用之基于Langchain的测试用例生成

一 用例生成实践效果

组内的日常工作安排中,持续优化测试技术、提高测试效率始终是重点任务。近期,我们在探索实践使用大模型生成测试用例,期望能够借助其强大的自然语言处理能力,自动化地生成更全面和高质量的测试用例。


当前,公司已经普及使用 JoyCoder,我们可以拷贝相关需求及设计文档的信息给到 JoyCoder,让其生成测试用例,但在使用过程中有以下痛点:


1)仍需要多步人工操作:如复制粘贴文档,编写提示词,拷贝结果,保存用例等


2)响应时间久,结果不稳定:当需求或设计文档内容较大时,提示词太长或超出 token 限制


因此,我探索了基于 Langchain 与公司的提供的网关接口)使测试用例可以自动、快速、稳定生成的方法,效果如下:

(什么是 LangChain? 它是一个开源框架,用于构建基于大型语言模型(LLM)的应用程序。LLM 是基于大量数据预先训练的大型深度学习模型,可以生成对用户查询的响应,例如回答问题或根据基于文本的提示创建图像。LangChain 提供各种工具和抽象,以提高模型生成的信息的定制性、准确性和相关性。例如,开发人员可以使用 LangChain 组件来构建新的提示链或自定义现有模板。LangChain 还包括一些组件,可让 LLM 无需重新训练即可访问新的数据集。)

二 细节介绍

1 基于 Langchain 的测试用例生成方案

因 3 种方案使用场景不同,优缺点也可互补,故当前我将 3 种方式都实现了,提供大家按需调用。

2 实现细节

2.1 整体流程


2.2 技术细节说明

pdf 内容解析: :Langchain 支持多种文件格式的解析,如 csv、json、html、pdf 等,而 pdf 又有很多不同的库可以使用,本次我选择 PyMuPDF,它以功能全面且处理速度快为优势


文件切割处理: 为了防止一次传入内容过多,容易导致大模型响应时间久或超出 token 限制,利用 Langchain 的文本切割器,将文件分为各个小文本的列表形式


Memory 的使用: 大多数 LLM 模型都有一个会话接口,当我们使用接口调用大模型能力时,每一次的调用都是新的一次会话。如果我们想和大模型进行多轮的对话,而不必每次重复之前的上下文时,就需要一个 Memory 来记忆我们之前的对话内容。Memory 就是这样的一个模块,来帮助开发者可以快速的构建自己的应用“记忆”。本次我使用Langchain的ConversationBufferMemory与ConversationSummaryBufferMemory来实现,将需求文档和设计文档内容直接存入 Memory,可减少与大模型问答的次数(减少大模型网关调用次数),提高整体用例文件生成的速度。ConversationSummaryBufferMemory 主要是用在提取“摘要”信息的部分,它可以将将需求文档和设计文档内容进行归纳性总结后,再传给大模型


向量数据库: 利用公司已有的向量数据库[测试环境 Vearch],将文件存入。 在创建数据表时,需要了解向量数据库的检索模型及其对应的参数,目前支持六种类型,IVFPQ,HNSW,GPU,IVFFLAT,BINARYIVF,FLAT(详细区别和参数可点此链接),目前我选择了较为基础的 IVFFLAT--基于量化的索引,后续如果数据量太大或者需要处理图数据时再优化。另外 Langchain 也有很方便的vearch存储和查询的方法可以使用

2.3 代码框架及部分代码展示

代码框架:


​代码示例:


    def case_gen(prd_file_path, tdd_file_path, input_prompt, case_name):        """        用例生成的方法        参数:        prd_file_path - prd文档路径        tdd_file_path - 技术设计文档路径        case_name - 待生成的测试用例名称        """        # 解析需求、设计相关文档, 输出的是document列表        prd_file = PDFParse(prd_file_path).load_pymupdf_split()        tdd_file = PDFParse(tdd_file_path).load_pymupdf_split()        empty_case = FilePath.read_file(FilePath.empty_case)
# 将需求、设计相关文档设置给memory作为llm的记忆信息 prompt = ChatPromptTemplate.from_messages( [ SystemMessage( content="You are a chatbot having a conversation with a human." ), # The persistent system prompt MessagesPlaceholder( variable_name="chat_history" ), # Where the memory will be stored. HumanMessagePromptTemplate.from_template( "{human_input}" ), # Where the human input will injected ] ) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) for prd in prd_file: memory.save_context({"input": prd.page_content}, {"output": "这是一段需求文档,后续输出测试用例需要"}) for tdd in tdd_file: memory.save_context({"input": tdd.page_content}, {"output": "这是一段技术设计文档,后续输出测试用例需要"})
# 调大模型生成测试用例 llm = LLMFactory.get_openai_factory().get_chat_llm() human_input = "作为软件测试开发专家,请根据以上的产品需求及技术设计信息," + input_prompt + ",以markdown格式输出测试用例,用例模版是" + empty_case chain = LLMChain( llm=llm, prompt=prompt, verbose=True, memory=memory, ) output_raw = chain.invoke({'human_input': human_input})
# 保存输出的用例内容,markdown格式 file_path = FilePath.out_file + case_name + ".md" with open(file_path, 'w') as file: file.write(output_raw.get('text'))
复制代码


    def case_gen_by_vector(prd_file_path, tdd_file_path, input_prompt, table_name, case_name):        """        !!!当文本超级大时,防止token不够,通过向量数据库,搜出某一部分的内容,生成局部的测试用例,细节更准确一些!!!        参数:        prd_file_path - prd文档路径        tdd_file_path - 技术设计文档路径        table_name - 向量数据库的表名,分业务存储,一般使用业务英文唯一标识的简称        case_name - 待生成的测试用例名称        """        # 解析需求、设计相关文档, 输出的是document列表        prd_file = PDFParse(prd_file_path).load_pymupdf_split()        tdd_file = PDFParse(tdd_file_path).load_pymupdf_split()        empty_case = FilePath.read_file(FilePath.empty_case)        # 把文档存入向量数据库        docs = prd_file + tdd_file        embedding_model = LLMFactory.get_openai_factory().get_embedding()        router_url = ConfigParse(FilePath.config_file_path).get_vearch_router_server()        vearch_cluster = Vearch.from_documents(            docs,            embedding_model,            path_or_url=router_url,            db_name="y_test_qa",            table_name=table_name,            flag=1,        )        # 从向量数据库搜索相关内容        docs = vearch_cluster.similarity_search(query=input_prompt, k=1)        content = docs[0].page_content
# 使用向量查询的相关信息给大模型生成用例 prompt_template = "作为软件测试开发专家,请根据产品需求技术设计中{input_prompt}的相关信息:{content},以markdown格式输出测试用例,用例模版是:{empty_case}" prompt = PromptTemplate( input_variables=["input_prompt", "content", "empty_case"], template=prompt_template ) llm = LLMFactory.get_openai_factory().get_chat_llm() chain = LLMChain( llm=llm, prompt=prompt, verbose=True ) output_raw = chain.invoke( {'input_prompt': input_prompt, 'content': content, 'empty_case': empty_case}) # 保存输出的用例内容,markdown格式 file_path = FilePath.out_file + case_name + ".md" with open(file_path, 'w') as file: file.write(output_raw.get('text'))
复制代码

三 效果展示

3.1 实际运用到需求/项目的效果

用例生成后是否真的能帮助我们节省用例设计的时间,是大家重点关注的,因此我随机在一个小型需求中进行了实验,此需求的 PRD 文档总字数 2000+,设计文档总字数 100+(因大部分是流程图),结果效率提升 50%。


本次利用大模型自动生成用例的优缺点:


优势:


•全面快速的进行了用例的逻辑点划分,协助测试分析理解需求及设计


•降低编写测试用例的时间,人工只需要进行内容确认和细节调整


•用例内容更加全面丰富,在用例评审时,待补充的点变少了,且可以有效防止漏测


•如测试人员仅负责一部分功能的测试,也可通过向量数据库搜索的形式,聚焦部分功能的生成


劣势:


•暂时没实现对流程图的理解,当文本描述较少时,生成内容有偏差


•对于有丰富经验的测试人员,自动生成用例的思路可能与自己习惯的思路不一致,需要自己再调整或适应

四 待解决问题及后续计划

1.对于 pdf 中的流程图(图片形式),实现了文字提取识别(langchain pdf 相关的方法支持了 ocr 识别),后续需要找到更适合解决图内容的解析、检索的方式。


2.生成用例只是测试提效的一小部分,后续需要尝试将大模型应用与日常测试过程,目前的想法有针对 diff 代码和服务器日志的分析来自动定位缺陷、基于模型驱动测试结合知识图谱实现的自动化测试等方向。

发布于: 2 小时前阅读数: 13
用户头像

还未添加个人签名 2024-01-12 加入

京东零售那些事,有品、有调又有料的研发资讯,带你深入了解程序猿的生活和工作。

评论

发布
暂无评论
大模型应用之基于Langchain的测试用例生成_人工智能_京东零售技术_InfoQ写作社区