滴滴前端面试题合集
DNS 记录和报文
DNS 服务器中以资源记录的形式存储信息,每一个 DNS 响应报文一般包含多条资源记录。一条资源记录的具体的格式为
其中 TTL 是资源记录的生存时间,它定义了资源记录能够被其他的 DNS 服务器缓存多长时间。
常用的一共有四种 Type 的值,分别是 A、NS、CNAME 和 MX ,不同 Type 的值,对应资源记录代表的意义不同:
如果 Type = A,则 Name 是主机名,Value 是主机名对应的 IP 地址。因此一条记录为 A 的资源记录,提供了标 准的主机名到 IP 地址的映射。
如果 Type = NS,则 Name 是个域名,Value 是负责该域名的 DNS 服务器的主机名。这个记录主要用于 DNS 链式 查询时,返回下一级需要查询的 DNS 服务器的信息。
如果 Type = CNAME,则 Name 为别名,Value 为该主机的规范主机名。该条记录用于向查询的主机返回一个主机名 对应的规范主机名,从而告诉查询主机去查询这个主机名的 IP 地址。主机别名主要是为了通过给一些复杂的主机名提供 一个便于记忆的简单的别名。
如果 Type = MX,则 Name 为一个邮件服务器的别名,Value 为邮件服务器的规范主机名。它的作用和 CNAME 是一 样的,都是为了解决规范主机名不利于记忆的缺点。
对原型、原型链的理解
在 JavaScript 中是使用构造函数来新建一个对象的,每一个构造函数的内部都有一个 prototype 属性,它的属性值是一个对象,这个对象包含了可以由该构造函数的所有实例共享的属性和方法。当使用构造函数新建一个对象后,在这个对象的内部将包含一个指针,这个指针指向构造函数的 prototype 属性对应的值,在 ES5 中这个指针被称为对象的原型。一般来说不应该能够获取到这个值的,但是现在浏览器中都实现了 proto 属性来访问这个属性,但是最好不要使用这个属性,因为它不是规范中规定的。ES5 中新增了一个 Object.getPrototypeOf() 方法,可以通过这个方法来获取对象的原型。
当访问一个对象的属性时,如果这个对象内部不存在这个属性,那么它就会去它的原型对象里找这个属性,这个原型对象又会有自己的原型,于是就这样一直找下去,也就是原型链的概念。原型链的尽头一般来说都是 Object.prototype 所以这就是新建的对象为什么能够使用 toString() 等方法的原因。
特点: JavaScript 对象是通过引用来传递的,创建的每个新对象实体中并没有一份属于自己的原型副本。当修改原型时,与之相关的对象也会继承这一改变。
对 WebSocket 的理解
WebSocket 是 HTML5 提供的一种浏览器与服务器进行全双工通讯的网络技术,属于应用层协议。它基于 TCP 传输协议,并复用 HTTP 的握手通道。浏览器和服务器只需要完成一次握手,两者之间就直接可以创建持久性的连接, 并进行双向数据传输。
WebSocket 的出现就解决了半双工通信的弊端。它最大的特点是:服务器可以向客户端主动推动消息,客户端也可以主动向服务器推送消息。
WebSocket 原理:客户端向 WebSocket 服务器通知(notify)一个带有所有接收者 ID(recipients IDs)的事件(event),服务器接收后立即通知所有活跃的(active)客户端,只有 ID 在接收者 ID 序列中的客户端才会处理这个事件。
WebSocket 特点的如下:
支持双向通信,实时性更强
可以发送文本,也可以发送二进制数据‘’
建立在 TCP 协议之上,服务端的实现比较容易
数据格式比较轻量,性能开销小,通信高效
没有同源限制,客户端可以与任意服务器通信
协议标识符是 ws(如果加密,则为 wss),服务器网址就是 URL
与 HTTP 协议有着良好的兼容性。默认端口也是 80 和 443,并且握手阶段采用 HTTP 协议,因此握手时不容易屏蔽,能通过各种 HTTP 代理服务器。
Websocket 的使用方法如下:
在客户端中:
其他值到布尔类型的值的转换规则?
以下这些是假值:• undefined• null• false• +0、-0 和 NaN• ""
假值的布尔强制类型转换结果为 false。从逻辑上说,假值列表以外的都应该是真值。
代码输出结果
输出结果:3 6
解析:
我们知道,匿名函数的 this 是指向全局对象的,所以 this 指向 window,会打印出 3;
getY 是由 obj 调用的,所以其 this 指向的是 obj 对象,会打印出 6。
代码输出结果
输出结果如下:
代码的执行过程如下:
首先进入
async1
,打印出async1 start
;之后遇到
async2
,进入async2
,遇到定时器timer2
,加入宏任务队列,之后打印async2
;由于
async2
阻塞了后面代码的执行,所以执行后面的定时器timer3
,将其加入宏任务队列,之后打印start
;然后执行 async2 后面的代码,打印出
async1 end
,遇到定时器 timer1,将其加入宏任务队列;最后,宏任务队列有三个任务,先后顺序为
timer2
,timer3
,timer1
,没有微任务,所以直接所有的宏任务按照先进先出的原则执行。
OPTIONS 请求方法及使用场景
OPTIONS 是除了 GET 和 POST 之外的其中一种 HTTP 请求方法。
OPTIONS 方法是用于请求获得由Request-URI
标识的资源在请求/响应的通信过程中可以使用的功能选项。通过这个方法,客户端可以在采取具体资源请求之前,决定对该资源采取何种必要措施,或者了解服务器的性能。该请求方法的响应不能缓存。
OPTIONS 请求方法的主要用途有两个:
获取服务器支持的所有 HTTP 请求方法;
用来检查访问权限。例如:在进行 CORS 跨域资源共享时,对于复杂请求,就是使用 OPTIONS 方法发送嗅探请求,以判断是否有对指定资源的访问权限。
树形结构转成列表
题目描述:
实现代码如下:
position 的属性有哪些,区别是什么
position 有以下属性值:
前面三者的定位方式如下:
relative: 元素的定位永远是相对于元素自身位置的,和其他元素没关系,也不会影响其他元素。
fixed: 元素的定位是相对于 window (或者 iframe)边界的,和其他元素没有关系。但是它具有破坏性,会导致其他元素位置的变化。
absolute: 元素的定位相对于前两者要复杂许多。如果为 absolute 设置了 top、left,浏览器会根据什么去确定它的纵向和横向的偏移量呢?答案是浏览器会递归查找该元素的所有父元素,如果找到一个设置了
position:relative/absolute/fixed
的元素,就以该元素为基准定位,如果没找到,就以浏览器边界定位。如下两个图所示:
如何解决跨越问题
(1)CORS
下面是 MDN 对于 CORS 的定义:
跨域资源共享(CORS) 是一种机制,它使用额外的 HTTP 头来告诉浏览器 让运行在一个 origin (domain)上的 Web 应用被准许访问来自不同源服务器上的指定的资源。当一个资源从与该资源本身所在的服务器不同的域、协议或端口请求一个资源时,资源会发起一个跨域 HTTP 请求。
CORS 需要浏览器和服务器同时支持,整个 CORS 过程都是浏览器完成的,无需用户参与。因此实现 CORS 的关键就是服务器,只要服务器实现了 CORS 请求,就可以跨源通信了。
浏览器将 CORS 分为简单请求和非简单请求:
简单请求不会触发 CORS 预检请求。若该请求满足以下两个条件,就可以看作是简单请求:
1)请求方法是以下三种方法之一:
HEAD
GET
POST
2)HTTP 的头信息不超出以下几种字段:
Accept
Accept-Language
Content-Language
Last-Event-ID
Content-Type:只限于三个值 application/x-www-form-urlencoded、multipart/form-data、text/plain
若不满足以上条件,就属于非简单请求了。
(1)简单请求过程:
对于简单请求,浏览器会直接发出 CORS 请求,它会在请求的头信息中增加一个 Orign 字段,该字段用来说明本次请求来自哪个源(协议+端口+域名),服务器会根据这个值来决定是否同意这次请求。如果 Orign 指定的域名在许可范围之内,服务器返回的响应就会多出以下信息头:
如果 Orign 指定的域名不在许可范围之内,服务器会返回一个正常的 HTTP 回应,浏览器发现没有上面的 Access-Control-Allow-Origin 头部信息,就知道出错了。这个错误无法通过状态码识别,因为返回的状态码可能是 200。
在简单请求中,在服务器内,至少需要设置字段:Access-Control-Allow-Origin
(2)非简单请求过程
非简单请求是对服务器有特殊要求的请求,比如请求方法为 DELETE 或者 PUT 等。非简单请求的 CORS 请求会在正式通信之前进行一次 HTTP 查询请求,称为预检请求。
浏览器会询问服务器,当前所在的网页是否在服务器允许访问的范围内,以及可以使用哪些 HTTP 请求方式和头信息字段,只有得到肯定的回复,才会进行正式的 HTTP 请求,否则就会报错。
预检请求使用的请求方法是 OPTIONS,表示这个请求是来询问的。他的头信息中的关键字段是 Orign,表示请求来自哪个源。除此之外,头信息中还包括两个字段:
Access-Control-Request-Method:该字段是必须的,用来列出浏览器的 CORS 请求会用到哪些 HTTP 方法。
Access-Control-Request-Headers: 该字段是一个逗号分隔的字符串,指定浏览器 CORS 请求会额外发送的头信息字段。
服务器在收到浏览器的预检请求之后,会根据头信息的三个字段来进行判断,如果返回的头信息在中有 Access-Control-Allow-Origin 这个字段就是允许跨域请求,如果没有,就是不同意这个预检请求,就会报错。
服务器回应的 CORS 的字段如下:
只要服务器通过了预检请求,在以后每次的 CORS 请求都会自带一个 Origin 头信息字段。服务器的回应,也都会有一个 Access-Control-Allow-Origin 头信息字段。
在非简单请求中,至少需要设置以下字段:
减少 OPTIONS 请求次数:
OPTIONS 请求次数过多就会损耗页面加载的性能,降低用户体验度。所以尽量要减少 OPTIONS 请求次数,可以后端在请求的返回头部添加:Access-Control-Max-Age:number。它表示预检请求的返回结果可以被缓存多久,单位是秒。该字段只对完全一样的 URL 的缓存设置生效,所以设置了缓存时间,在这个时间范围内,再次发送请求就不需要进行预检请求了。
CORS 中 Cookie 相关问题:
在 CORS 请求中,如果想要传递 Cookie,就要满足以下三个条件:
在请求中设置
withCredentials
默认情况下在跨域请求,浏览器是不带 cookie 的。但是我们可以通过设置 withCredentials 来进行传递 cookie.
Access-Control-Allow-Credentials 设置为 true
Access-Control-Allow-Origin 设置为非
*
(2)JSONP
jsonp 的原理就是利用<script>
标签没有跨域限制,通过<script>
标签 src 属性,发送带有 callback 参数的 GET 请求,服务端将接口返回数据拼凑到 callback 函数中,返回给浏览器,浏览器解析执行,从而前端拿到 callback 函数返回的数据。1)原生 JS 实现:
服务端返回如下(返回时即执行全局函数):
2)Vue axios 实现:
后端 node.js 代码:
JSONP 的缺点:
具有局限性, 仅支持 get 方法
不安全,可能会遭受 XSS 攻击
(3)postMessage 跨域
postMessage 是 HTML5 XMLHttpRequest Level 2 中的 API,且是为数不多可以跨域操作的 window 属性之一,它可用于解决以下方面的问题:
页面和其打开的新窗口的数据传递
多窗口之间消息传递
页面与嵌套的 iframe 消息传递
上面三个场景的跨域数据传递
用法:postMessage(data,origin)方法接受两个参数:
data: html5 规范支持任意基本类型或可复制的对象,但部分浏览器只支持字符串,所以传参时最好用 JSON.stringify()序列化。
origin: 协议+主机+端口号,也可以设置为"*",表示可以传递给任意窗口,如果要指定和当前窗口同源的话设置为"/"。
1)a.html:(domain1.com/a.html)
2)b.html:(domain2.com/b.html)
(4)nginx 代理跨域
nginx 代理跨域,实质和 CORS 跨域原理一样,通过配置文件设置请求响应头 Access-Control-Allow-Origin…等字段。
1)nginx 配置解决 iconfont 跨域浏览器跨域访问 js、css、img 等常规静态资源被同源策略许可,但 iconfont 字体文件(eot|otf|ttf|woff|svg)例外,此时可在 nginx 的静态资源服务器中加入以下配置。
2)nginx 反向代理接口跨域跨域问题:同源策略仅是针对浏览器的安全策略。服务器端调用 HTTP 接口只是使用 HTTP 协议,不需要同源策略,也就不存在跨域问题。实现思路:通过 Nginx 配置一个代理服务器域名与 domain1 相同,端口不同)做跳板机,反向代理访问 domain2 接口,并且可以顺便修改 cookie 中 domain 信息,方便当前域 cookie 写入,实现跨域访问。
nginx 具体配置:
(5)nodejs 中间件代理跨域
node 中间件实现跨域代理,原理大致与 nginx 相同,都是通过启一个代理服务器,实现数据的转发,也可以通过设置 cookieDomainRewrite 参数修改响应头中 cookie 中域名,实现当前域的 cookie 写入,方便接口登录认证。
1)非 vue 框架的跨域 使用 node + express + http-proxy-middleware 搭建一个 proxy 服务器。
前端代码:
中间件服务器代码:
2)vue 框架的跨域
node + vue + webpack + webpack-dev-server 搭建的项目,跨域请求接口,直接修改 webpack.config.js 配置。开发环境下,vue 渲染服务和接口代理服务都是 webpack-dev-server 同一个,所以页面与代理接口之间不再跨域。
webpack.config.js 部分配置:
(6)document.domain + iframe 跨域
此方案仅限主域相同,子域不同的跨域应用场景。实现原理:两个页面都通过 js 强制设置 document.domain 为基础主域,就实现了同域。1)父窗口:(domain.com/a.html)
1)子窗口:(child.domain.com/a.html)
(7)location.hash + iframe 跨域
实现原理:a 欲与 b 跨域相互通信,通过中间页 c 来实现。 三个页面,不同域之间利用 iframe 的 location.hash 传值,相同域之间直接 js 访问来通信。
具体实现:A 域:a.html -> B 域:b.html -> A 域:c.html,a 与 b 不同域只能通过 hash 值单向通信,b 与 c 也不同域也只能单向通信,但 c 与 a 同域,所以 c 可通过 parent.parent 访问 a 页面所有对象。
1)a.html:(domain1.com/a.html)
2)b.html:(.domain2.com/b.html)
(8)window.name + iframe 跨域
window.name 属性的独特之处:name 值在不同的页面(甚至不同域名)加载后依旧存在,并且可以支持非常长的 name 值(2MB)。
1)a.html:(domain1.com/a.html)
2)proxy.html:(domain1.com/proxy.html)
中间代理页,与 a.html 同域,内容为空即可。3)b.html:(domain2.com/b.html)
通过 iframe 的 src 属性由外域转向本地域,跨域数据即由 iframe 的 window.name 从外域传递到本地域。这个就巧妙地绕过了浏览器的跨域访问限制,但同时它又是安全操作。
(9)WebSocket 协议跨域
WebSocket protocol 是 HTML5 一种新的协议。它实现了浏览器与服务器全双工通信,同时允许跨域通讯,是 server push 技术的一种很好的实现。
原生 WebSocket API 使用起来不太方便,我们使用 Socket.io,它很好地封装了 webSocket 接口,提供了更简单、灵活的接口,也对不支持 webSocket 的浏览器提供了向下兼容。
1)前端代码:
2)Nodejs socket 后台:
documentFragment 是什么?用它跟直接操作 DOM 的区别是什么?
MDN 中对documentFragment
的解释:
DocumentFragment,文档片段接口,一个没有父对象的最小文档对象。它被作为一个轻量版的 Document 使用,就像标准的 document 一样,存储由节点(nodes)组成的文档结构。与 document 相比,最大的区别是 DocumentFragment 不是真实 DOM 树的一部分,它的变化不会触发 DOM 树的重新渲染,且不会导致性能等问题。
当我们把一个 DocumentFragment 节点插入文档树时,插入的不是 DocumentFragment 自身,而是它的所有子孙节点。在频繁的 DOM 操作时,我们就可以将 DOM 元素插入 DocumentFragment,之后一次性的将所有的子孙节点插入文档中。和直接操作 DOM 相比,将 DocumentFragment 节点插入 DOM 树时,不会触发页面的重绘,这样就大大提高了页面的性能。
对 line-height 的理解及其赋值方式
(1)line-height 的概念:
line-height 指一行文本的高度,包含了字间距,实际上是下一行基线到上一行基线距离;
如果一个标签没有定义 height 属性,那么其最终表现的高度由 line-height 决定;
一个容器没有设置高度,那么撑开容器高度的是 line-height,而不是容器内的文本内容;
把 line-height 值设置为 height 一样大小的值可以实现单行文字的垂直居中;
line-height 和 height 都能撑开一个高度;
(2)line-height 的赋值方式:
带单位:px 是固定值,而 em 会参考父元素 font-size 值计算自身的行高
纯数字:会把比例传递给后代。例如,父级行高为 1.5,子元素字体为 18px,则子元素行高为 1.5 * 18 = 27px
百分比:将计算后的值传递给后代
什么是物理像素,逻辑像素和像素密度,为什么在移动端开发时需要用到 @3x, @2x 这种图片?
以 iPhone XS 为例,当写 CSS 代码时,针对于单位 px,其宽度为 414px & 896px,也就是说当赋予一个 DIV 元素宽度为 414px,这个 DIV 就会填满手机的宽度;
而如果有一把尺子来实际测量这部手机的物理像素,实际为 1242*2688 物理像素;经过计算可知,1242/414=3,也就是说,在单边上,一个逻辑像素=3 个物理像素,就说这个屏幕的像素密度为 3,也就是常说的 3 倍屏。
对于图片来说,为了保证其不失真,1 个图片像素至少要对应一个物理像素,假如原始图片是 500300 像素,那么在 3 倍屏上就要放一个 1500900 像素的图片才能保证 1 个物理像素至少对应一个图片像素,才能不失真。 当然,也可以针对所有屏幕,都只提供最高清图片。虽然低密度屏幕用不到那么多图片像素,而且会因为下载多余的像素造成带宽浪费和下载延迟,但从结果上说能保证图片在所有屏幕上都不会失真。
还可以使用 CSS 媒体查询来判断不同的像素密度,从而选择不同的图片:
代码输出结果
输出结果如下:
这里其实是一个坑,.then
或 .catch
返回的值不能是 promise 本身,否则会造成死循环。
与缓存相关的 HTTP 请求头有哪些
强缓存:
Expires
Cache-Control
协商缓存:
Etag、If-None-Match
Last-Modified、If-Modified-Since
对事件循环的理解
因为 js 是单线程运行的,在代码执行时,通过将不同函数的执行上下文压入执行栈中来保证代码的有序执行。在执行同步代码时,如果遇到异步事件,js 引擎并不会一直等待其返回结果,而是会将这个事件挂起,继续执行执行栈中的其他任务。当异步事件执行完毕后,再将异步事件对应的回调加入到一个任务队列中等待执行。任务队列可以分为宏任务队列和微任务队列,当当前执行栈中的事件执行完毕后,js 引擎首先会判断微任务队列中是否有任务可以执行,如果有就将微任务队首的事件压入栈中执行。当微任务队列中的任务都执行完成后再去执行宏任务队列中的任务。
Event Loop 执行顺序如下所示:
首先执行同步代码,这属于宏任务
当执行完所有同步代码后,执行栈为空,查询是否有异步代码需要执行
执行所有微任务
当执行完所有微任务后,如有必要会渲染页面
然后开始下一轮 Event Loop,执行宏任务中的异步代码
评论