了解 HashMap 数据结构,超详细!
写在前面
小伙伴儿们,大家好!今天来学习HashMap相关内容,作为面试必问的知识点,来深入了解一波!
思维导图:
学习框架图
1,HashMap集合简介
HashMap基于哈希表的Map接口实现,是以key-value存储形式存在,即主要用来存放键值对。HashMap的实现不是同步的,这意味着它不是线程安全的。它的key、value都可以为null。此外,HashMap中的映射不是有序的。
JDK1.8之前的HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了节解决哈希碰撞(两个对象调用的hashCode方法计算的哈希码值一致导致计算的数组索引值相同)而存在的(“拉链法”解决冲突)。
JDK1.8之后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(或者红黑树的边界值,默认为8)并且当前数组的长度大于64时,此时此索引位置上的所有数据改为使用红黑树存储。
数组里面都是key-value的实例,在JDK1.8之前叫做Entry,在JDK1.8之后叫做Node。
key-value实例
由于它的key、value都为null,所以在插入的时候会根据key的hash去计算一个index索引的值。计算索引的方法如下:
这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算。
这样的话比如说put("A",王炸),插入了key为"A"的元素,这时候通过上述公式计算出插入的位置index,若index为3则结果如下(即hash("A")=3):
那么,HashMap中的链表又是干什么用的呢?
大家都知道数组的长度是有限的,在有限的长度里面使用哈希函数计算index的值时,很有可能插入的k值不同,但所产生的hash是相同的(也叫做哈希碰撞),这也就是哈希函数存在一定的概率性。就像上面的K值为A的元素,如果再次插入一个K值为a的元素,很有可能所产生的index值也为3,也就是即hash("a")=3;那这就形成了链表,这种解决哈希碰撞的方法也叫做拉链法。
当这个链表长度大于阈值8并且数组长度大于64则进行将链表变为红黑树。
补充:
将链表转换成红黑树前会判断,如果阈值大于8,但是数组长度小64,此时并不会将链表变为红黑树。而是选择进行数组扩容。
这样做的目的是因为数组比较小,尽量避开红黑树结构,这种情况下变为红黑树结构,反而会降低效率,因为红黑树需要进行左旋,右旋,变色这些操作来保持平衡。同事数组长度小于64时,搜索时间相对快一些。所以综上所述为了提高性能和减少搜索时间,底层在阈值大于8并且数组长度大于64时,链表才转换为红黑树。具体可以参考treeifyBin方法。
当然虽然增了红黑树作为底层数据结构,结构变得复杂了,但是阈值大于8并且数组长度大于64时,链表转换为红黑树时,效率也变得更高效。
特点:
存取无序的
键和值位置都可以是null,但是键位置只能是一个null
键位置是唯一的,底层的数据结构控制键的
jdk1.8前数据结构是:链表 + 数组 jdk1.8之后是 :链表 + 数组 + 红黑树
阈值(边界值) > 8 并且数组长度大于64,才将链表转换为红黑树,变为红黑树的目的是为了高效的查询。
2,HsahMap底层数据结构
2.1,HashMap存储数据的过程
每一个Node结点都包含键值对的key,value还有计算出来的hash值,还保存着下一个 Node 的引用 next(如果没有下一个 Node,next = null),来看看Node的源码:
HashMap存储数据需要用到put()方法,关于这些方法的详解,我们下节再说,这里简要说一下;
当创建HashMap集合对象的时候,在jdk1.8之前,构造方法中会创建很多长度是16的Entry[] table用来存储键值对数据的。在jdk1.8之后不是在HashMap的构造方法底层创建数组了,是在第一次调用put方法时创建的数组,Node[] table用来存储键值对数据的。
比方说我们向哈希表中存储"斑"-55的数据,根据K值("斑")调用String类中重写之后的hashCode()方法计算出值(数量级很大),然后结合数组长度采用取余((n-1)&hash)操作或者其他操作方法来计算出向Node数组中存储数据的空间的索引值。如果计算出来的索引空间没有数据,则直接将"斑"-55数据存储到数组中。跟上面的"A-王炸"数据差不多。
我们回到上方的数组图,如果此时再插入"A-蘑菇"元素,那么首先根据Key值("A")调用hashCode()方法结合数组长度计算出索引肯定也是3,此时比较后存储的"A-蘑菇"和已经存在的数据"A-王炸"的hash值是否相等,如果hash相等,此时发生hash碰撞。
那么底层会调用"A"所属类String中的equals方法比较两个key内容是否相等,若相等,则后添加的数据直接覆盖已经存在的Value,也就是"蘑菇"直接覆盖"王炸";若不相等,继续向下和其他数据的key进行比较,如果都不相等,则规划出一个节点存储数据。
两个结点key值比较,是否覆盖
2.2,哈希碰撞相关的问题
哈希表底层采用何种算法计算hash值?还有哪些算法可以计算出hash值?
底层是采用key的hashCode方法的值结合数组长度进行无符号右移(>>>)、按位异或(^)、按位与(&)计算出索引的
还可以采用:平方取中法,取余数,伪随机数法。这三种效率都比较低。而无符号右移16位异或运算效率是最高的。
当两个对象的hashCode相等时会怎么样?
会产生哈希碰撞,若key值内容相同则替换旧的value.否则连接到链表后面,链表长度超过阈值8就转换为红黑树存储。
何时发生哈希碰撞和什么是哈希碰撞,如何解决哈希碰撞?
只要两个元素的key计算的哈希值相同就会发生哈希碰撞。jdk8前使用链表解决哈希碰撞。jdk8之后使用链表+红黑树解决哈希碰撞。
如果两个键的hashcode相同,如何存储键值对?
hashcode相同,通过equals比较内容是否相同。相同:则新的value覆盖之前的value 不相同:则将新的键值对添加到哈希表中
2.3,红黑树结构
当位于一个链表中的元素较多,即hash值相等但是内容不相等的元素较多时,通过key值依次查找的效率较低。而jdk1.8中,哈希表存储采用数组+链表+红黑树实现,当链表长度(阀值)超过 8 时且当前数组的长度 > 64时,将链表转换为红黑树,这样大大减少了查找时间。jdk8在哈希表中引入红黑树的原因只是为了查找效率更高。
红黑树结构
JDK 1.8 以前 HashMap 的实现是 数组+链表,即使哈希函数取得再好,也很难达到元素百分百均匀分布。当 HashMap 中有大量的元素都存放到同一个桶中时,这个桶下有一条长长的链表,这个时候 HashMap 就相当于一个单链表,假如单链表有 n 个元素,遍历的时间复杂度就是 O(n),完全失去了它的优势。针对这种情况,JDK 1.8 中引入了 红黑树(查找时间复杂度为 O(logn))来优化这个问题。当链表长度很小的时候,即使遍历,速度也非常快,但是当链表长度不断变长,肯定会对查询性能有一定的影响,所以才需要转成树。
2.4,存储流程图
HashMap存放数据是用的put方法,put 方法内部调用的是 putVal() 方法,所以对 put 方法的分析也是对 putVal 方法的分析,整个过程比较复杂,流程图如下:
来看看put()源码:
小结:
根据哈希表中元素个数确定是扩容还是树形化
如果是树形化遍历桶中的元素,创建相同个数的树形节点,复制内容,建立起联系
然后让桶中的第一个元素指向新创建的树根节点,替换桶的链表内容为树形化内容
3,HashMap的扩容机制
我们知道,数组的容量是有限的,多次插入数据的话,到达一定数量就会进行扩容;先来看两个问题
什么时候需要扩容?
当HashMap中的元素个数超过数组长度loadFactor(负载因子)时,就会进行数组扩容,loadFactor的默认值是0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中的元素个数超过16×0.75=12(这个值就是阈值)的时候,就把数组的大小扩展为2×16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预知元素的个数能够有效的提高HashMap的性能。
怎么进行扩容的?
HashMap在进行扩容时使用 resize() 方法,计算 table 数组的新容量和 Node 在新数组中的新位置,将旧数组中的值复制到新数组中,从而实现自动扩容。因为每次扩容都是翻倍,与原来计算的 (n-1)&hash的结果相比,只是多了一个bit位,所以节点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。
因此,我们在扩充HashMap的时候,不需要重新计算hash,只需要看看原来hash值新增的那个bit是1还是0就可以了,是0的话索引没变,是1的话索引变成“原索引+oldCap(原位置+旧容量)”。这里不再详细赘述,可以看看下图为16扩充为32的resize示意图:
hashmap扩容
4,HashMap数组长度为什么是2的次幂
我们先看看它的成员变量:
序列化版本号
集合的初始化容量initCapacity
初始化容量默认是16,容量过大,遍历时会减慢速度,效率低;容量过小,那么扩容的次数变多,非常耗费性能。
负载因子
初始默认值为0.75,若过大,会导致哈希冲突的可能性更大;若过小,扩容的次数也会提高。
为什么必须是2的n次幂?
当向HashMap中添加一个元素的时候,需要根据key的hash值,去确定其在数组中的具体位置。HashMap为了提高存取效率,要尽量较少碰撞,就是要尽量把数据分配均匀,每个链表长度大致相同,这个实现就在把数据存到哪个链表中的算法。
这个算法实际就是取模,hash%length,计算机中直接求余效率不如位移运算。所以源码中做了优化,使用 hash&(length-1)
,而实际上hash%length
等于hash&(length-1)
的前提是length是2的n次幂。
如果输入值不是2的幂会怎么样?
如果数组长度不是2的n次幂,计算出的索引特别容易相同,及其容易发生hash碰撞,导致其余数组空间很大程度上并没有存储数据,链表或者红黑树过长,效率降低。
小结:
1,当根据key的hash确定其在数组的位置时,如果n为2的幂次方,可以保证数据的均匀插入,如果n不是2的幂次方,可能数组的一些位置永远不会插入数据,浪费数组的空间,加大hash冲突。
2,一般可能会想通过 % 求余来确定位置,这样也可以,只不过性能不如 & 运算。而且当n是2的幂次方时:hash & (length - 1) == hash % length
3,因此,HashMap 容量为2次幂的原因,就是为了数据的的均匀分布,减少hash冲突,毕竟hash冲突越大,代表数组中一个链的长度越大,这样的话会降低hashmap的性能
微信搜索公众号《程序员的时光》
好了,今天就先分享到这里了,下期继续给大家带来HashMap面试内容!
更多干货、优质文章,欢迎关注我的原创技术公众号~
版权声明: 本文为 InfoQ 作者【程序员的时光】的原创文章。
原文链接:【http://xie.infoq.cn/article/01538faefd4816128ede4212a】。文章转载请联系作者。
评论 (4 条评论)