面经手册 · 第 4 篇《HashMap 数据插入、查找、删除、遍历,源码分析》
作者:小傅哥
沉淀、分享、成长,让自己和他人都能有所收获!😄
一、前言
在上一章节我们讲解并用数据验证了,HashMap中的,散列表的实现
、扰动函数
、负载因子
以及扩容拆分
等核心知识点以及相应的作用。
除了以上这些知识点外,HashMap还有基本的数据功能;存储
、删除
、获取
、遍历
,在这些功能中经常会听到链表、红黑树、之间转换等功能。而红黑树是在jdk1.8引入到HashMap中解决链表过长问题的,简单说当链表长度>=8
时,将链表转换位红黑树(当然这里还有一个扩容的知识点,不一定都会树化[MIN_TREEIFY_CAPACITY])。
那么本章节会进行讲解以下知识点;
数据插入流程和源码分析
链表树化以及树转链表
遍历过程中的无序Set的核心知识
🕵注意: 建议阅读上一篇后,再阅读本篇文章《HashMap核心知识,扰动函数、负载因子、扩容链表拆分,深度学习》
二、HashMap源码分析
1. 插入
1.1 疑问点&考题
通过上一章节的学习:《HashMap核心知识,扰动函数、负载因子、扩容链表拆分,深度学习》
大家对于一个散列表数据结构的HashMap往里面插入数据时,基本已经有了一个印象。简单来说就是通过你的Key值取得哈希再计算下标,之后把相应的数据存放到里面。
但再这个过程中会遇到一些问题,比如;
如果出现哈希值计算的下标碰撞了怎么办?
如果碰撞了是扩容数组还是把值存成链表结构,让一个节点有多个值存放呢?
如果存放的数据的链表过长,就失去了散列表的性能了,怎么办呢?
如果想解决链表过长,什么时候使用树结构呢,使用哪种树呢?
这些疑问点都会在后面的内容中逐步讲解,也可以自己思考一下,如果是你来设计,你会怎么做。
1.2 插入流程和源码分析
HashMap插入数据流程图
visio原版流程图,可以通过关注公众号:bugstack虫洞栈,进行下载
以上就是HashMap中一个数据插入的整体流程,包括了;计算下标、何时扩容、何时链表转红黑树等,具体如下;
首先进行哈希值的扰动,获取一个新的哈希值。
(key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
判断tab是否位空或者长度为0,如果是则进行扩容操作。
```java
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
```
根据哈希值计算下标,如果对应小标正好没有存放数据,则直接插入即可否则需要覆盖。
tab[i = (n - 1) & hash])
判断tab[i]是否为树节点,否则向链表中插入数据,是则向树中插入节点。
如果链表中插入节点的时候,链表长度大于等于8,则需要把链表转换为红黑树。
treeifyBin(tab, hash);
最后所有元素处理完成后,判断是否超过阈值;
threshold
,超过则扩容。
treeifyBin
,是一个链表转树的方法,但不是所有的链表长度为8后都会转成树,还需要判断存放key值的数组桶长度是否小于64MIN_TREEIFY_CAPACITY
。如果小于则需要扩容,扩容后链表上的数据会被拆分散列的相应的桶节点上,也就把链表长度缩短了。
JDK1.8 HashMap的put方法源码如下:
1.3 扩容机制
HashMap是基于数组+链表和红黑树实现的,但用于存放key值得的数组桶的长度是固定的,由初始化决定。
那么,随着数据的插入数量增加以及负载因子的作用下,就需要扩容来存放更多的数据。而扩容中有一个非常重要的点,就是jdk1.8中的优化操作,可以不需要再重新计算每一个元素的哈希值,这在上一章节中已经讲到,可以阅读系列专题文章,机制如下图;
里我们主要看下扩容的代码(注释部分);
以上的代码稍微有些长,但是整体的逻辑还是蛮清晰的,主要包括;
扩容时计算出新的newCap、newThr,这是两个单词的缩写,一个是Capacity ,另一个是阀Threshold
newCap用于创新的数组桶
new Node[newCap];
随着扩容后,原来那些因为哈希碰撞,存放成链表和红黑树的元素,都需要进行拆分存放到新的位置中。
1.4 链表树化
HashMap这种散列表的数据结构,最大的性能在于可以O(1)时间复杂度定位到元素,但因为哈希碰撞不得已在一个下标里存放多组数据,那么jdk1.8之前的设计只是采用链表的方式进行存放,如果需要从链表中定位到数据时间复杂度就是O(n),链表越长性能越差。因为在jdk1.8中把过长的链表也就是8个,优化为自平衡的红黑树结构,以此让定位元素的时间复杂度优化近似于O(logn),这样来提升元素查找的效率。但也不是完全抛弃链表,因为在元素相对不多的情况下,链表的插入速度更快,所以综合考虑下设定阈值为8才进行红黑树转换操作。
链表转红黑树,如下图;
以上就是一组链表转换为红黑树的情况,元素包括;40、51、62、73、84、95、150、161 这些是经过实际验证可分配到Idx:12的节点
通过这张图,基本可以有一个链表
换行到红黑树
的印象,接下来阅读下对应的源码。
链表树化源码
这一部分链表树化的操作并不复杂,复杂点在于下一层的红黑树转换上,这部分知识点会在后续章节中专门介绍;
以上源码主要包括的知识点如下;
链表树化的条件有两点;链表长度大于等于8、桶容量大于64,否则只是扩容,不会树化。
链表树化的过程中是先由链表转换为树节点,此时的树可能不是一颗平衡树。同时在树转换过程中会记录链表的顺序,
tl.next = p
,这主要方便后续树转链表和拆分更方便。链表转换成树完成后,在进行红黑树的转换。先简单介绍下,红黑树的转换需要染色和旋转,以及比对大小。在比较元素的大小中,有一个比较有意思的方法,
tieBreakOrder
加时赛,这主要是因为HashMap没有像TreeMap那样本身就有Comparator的实现。
1.5 红黑树转链
在链表转红黑树中我们重点介绍了一句,在转换树的过程中,记录了原有链表的顺序。
那么,这就简单了,红黑树转链表时候,直接把TreeNode转换为Node即可,源码如下;
因为记录了链表关系,所以替换过程很容易。所以好的数据结构可以让操作变得更加容易。
2. 查找
上图就是HashMap查找的一个流程图,还是比较简单的,同时也是高效的。
接下来我们在结合代码,来分析这段流程,如下;
以上查找的代码还是比较简单的,主要包括以下知识点;
扰动函数的使用,获取新的哈希值,这在上一章节已经讲过
下标的计算,同样也介绍过
tab[(n - 1) & hash])
确定了桶数组下标位置,接下来就是对红黑树和链表进行查找和遍历操作了
3. 删除
删除的操作也比较简单,这里面都没有太多的复杂的逻辑。
另外红黑树的操作因为被包装了,只看使用上也是很容易。
4. 遍历
4.1 问题点
HashMap中的遍历也是非常常用的API方法,包括;
KeySet
EntrySet
从方法上以及日常使用都知道,KeySet是遍历是无序的,但每次使用不同方式遍历包括keys.iterator()
,它们遍历的结果是固定的。
那么从实现的角度来看,这些种遍历都是从散列表中的链表和红黑树获取集合值,那么他们有一个什么固定的规律吗?
4.2 用代码测试
测试的场景和前提;
这里我们要设定一个既有红黑树又有链表结构的数据场景
为了可以有这样的数据结构,我们最好把HashMap的初始长度设定为64,避免在链表超过8位后扩容,而是直接让其转换为红黑树。
找到18个元素,分别放在不同节点(这些数据通过程序计算得来);
1. 桶数组02节点:24、46、68
2. 桶数组07节点:29
3. 桶数组12节点:150、172、194、271、293、370、392、491、590
代码测试
这段代码分别测试了三种场景,如下;
添加元素,在HashMap还是只链表结构时,输出测试结果01
添加元素,在HashMap转换为红黑树时候,输出测试结果02
删除元素,在HashMap转换为链表结构时,输出测试结果03
4.3 测试结果分析
从map.keySet()测试结果可以看到,如下信息;
01情况下,排序定位哈希值下标和链表信息
02情况下,因为链表转换为红黑树,树根会移动到数组头部。
moveRootToFront()方法
03情况下,因为删除了部分元素,红黑树退化成链表。
三、总结
这一篇API源码以及逻辑与上一篇数据结构中扰动函数、负载因子、散列表实现等,内容的结合,算是把HashMap基本常用技术点,梳理完成了。但知识绝不止于此,这里还有红黑树的相关技术内容,后续会进行详细。
除了HashMap以外还有TreeMap、ConcurrentHashMap等,每一个核心类都有一些相关的核心知识点,每一个都非常值得深入研究。这个烧脑的过程,是学习获得知识的最佳方式。
可能关于HashMap还有一些疏漏的点,也希望阅读的小伙伴可以提出更多的问题,互相学习,共同进步,本文就到这里,感谢您的阅读!
五、推荐阅读
版权声明: 本文为 InfoQ 作者【小傅哥】的原创文章。
原文链接:【http://xie.infoq.cn/article/00edf9f1033f6dd6d306750bc】。文章转载请联系作者。
评论